一文读懂RAG、LangChain、Agent 到底有啥关系?

一文读懂RAG、LangChain、Agent 到底有啥关系?

假设你是一名企业合规产品经理,接到一份合规同事的请求:

我们公司是否符合 ISO-27001 第九条?请给一份答处与原文引用。

为了找到答案,我们需要理解标准条文、定位内部制度文档、比对内容差异,甚至进一步追问第三方系统中是否存在冲突证据。

这些能力,是一个完整的信息检索、信息整合以及总结输出的过程,那么,一个 LLM 应用,怎样才能处理这种合规级别的任务?

我们先看下这张图

图片

可以在中使用LangChain框架中,使用RAG技术来创建一个Agent,扮演特定的角色专门解决用户的特定需求。

在此过程中,🧠 Agent 是思考者,🔧 LangChain 是协调者,📃 RAG 是资料员。

01

RAG:让模型“查得到”正确的信息

在任何大模型应用中,“知识不足”是第一堵墙。即便你的模型很强,但它本身未必知道企业自己的制度、合同、标准,也不具备最新行业法规。RAG(Retrieval-Augmented Generation)就是用来解决这个问题的。

<
<think>好的,我现在需要回答用户关于Agent架构中RAG、LLM、Prompt和LangChain的作用和区别的问题。首先,我需要回顾用户提供的引用内容,确保准确理解每个术语的定义和相互关系。 根据引用[1],LangChain是一个模块化框架,帮助开发者快速构建RAG应用。RAG结合了检索和生成,增强LLM的回答能力。Agent作为执行任务的代理人,可能需要使用LangChain来整合工具和模型。引用[2]提到Agent的类型,如CHAT_ZERO_SHOT_REACT_DESCRIPTION,强调其无记忆和多步骤推理的特点。这里也提到了LangChain在初始化Agent时的作用,包括加载工具和模型。引用[3]指出Agent是用户和LLM之间的中间人,能够自主解决问题,而RAG是扩展LLM知识的方法之一。 接下来,我需要明确每个组件的作用: - **LLM**是核心,负责生成文本,作为Agent的“大脑”。 - **Prompt**是指导LLM的输入,决定任务的具体执行方式。 - **RAG**通过检索外部数据增强LLM的输出,尤其在需要实时或专有数据时。 - **LangChain**提供框架,模块化地组合这些组件,简化开发流程。 然后要区分它们在Agent架构中的不同角色。例如,LangChain是构建工具,而RAG是处理数据的方法,Prompt是控制LLM的指令,LLM是生成基础。需要指出它们如何协同工作,比如Agent使用LangChain整合RAG模块和LLM,并通过精心设计的Prompt来指导任务流程。 可能用户还会混淆RAGAgent关系,需要明确RAGAgent可能采用的一种技术,而Agent本身是一个更广泛的概念,涉及决策和任务执行。同时,Prompt工程在优化Agent性能中的重要性也需要强调。 最后,确保回答结构清晰,分点说明每个组件的作用和区别,并引用提供的资料来支持论点,比如引用[1]中LangChain的模块化特点,引用[2]中的Agent初始化过程,引用[3]中Agent作为中间人的角色。这样用户能清晰理解各部分在架构中的位置和协作方式。</think>### Agent架构中RAG、LLM、Prompt、LangChain的作用与区别 在Agent架构中,RAG、LLM、Prompt和LangChain分别扮演不同角色,共同支撑智能体的决策与执行能力。以下是它们的核心作用和区别: --- #### 1. **LLM(大语言模型)** - **作用**:LLM是Agent的“大脑”,负责核心推理和文本生成。例如,处理用户指令、生成中间推理步骤、决定下一步操作等[^3]。 - **特点**:LLM本身是被动的,需通过Prompt触发响应,且依赖外部工具或知识库扩展能力(如RAG)。 - **示例**:当用户问“明天的天气如何?”时,LLM可能生成“需要调用天气API获取数据”的指令。 --- #### 2. **Prompt(提示词)** - **作用**:定义任务目标、约束条件和工具调用规则,是控制LLM行为的“指令集”。 - **特点**: - 通过结构化模板引导LLM遵循特定流程(如ReAct框架中的“思考-行动-观察”循环)[^2]。 - 支持动态注入上下文(如用户历史对话、工具描述)。 - **示例**: ```text 你是一个天气助手,按以下步骤执行: 1. 解析用户请求中的地点和时间; 2. 调用天气API获取数据; 3. 用自然语言总结结果。 ``` --- #### 3. **RAG(检索增强生成)** - **作用**:为LLM提供外部知识支持,解决其静态知识库的局限性(如时效性、专有领域数据)。 - **实现方式**: - **检索**:从数据库/文档中匹配相关内容(如最新政策、公司内部数据)。 - **增强生成**:将检索结果注入Prompt,辅助LLM生成更准确的回答[^1]。 - **与Agent关系**:RAG可作为Agent的工具之一,用于知识密集型任务(如客服问答)。 --- #### 4. **LangChain** - **作用**:提供模块化框架,集成LLM、工具(包括RAG)、记忆系统等组件,简化Agent开发[^1]。 - **核心功能**: - **工具链管理**:封装API调用、数据库查询等操作(如天气API、RAG检索)。 - **Agent编排**:通过预定义代理类型(如`CHAT_ZERO_SHOT_REACT_DESCRIPTION`)实现多步骤推理[^2]。 - **错误处理**:自动解析LLM输出错误并重试(如无效的API参数格式)[^2]。 - **示例代码**: ```python from langchain.agents import initialize_agent agent = initialize_agent( tools=[rag_tool, weather_api_tool], # 工具列表(含RAG) llm=llm_model, # 大语言模型 agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, # 代理类型 handle_parsing_errors=True # 自动纠错 ) ``` --- #### 关键区别总结 | 组件 | 角色定位 | 依赖关系 | |-----------|------------------------------|------------------------------| | LLM | 核心推理引擎 | 依赖Prompt和工具扩展能力 | | Prompt | 行为控制器 | 依赖LLM的理解能力 | | RAG | 外部知识扩展工具 | 依赖检索系统与LLM的协同 | | LangChain | 框架级集成平台 | 依赖LLM、工具和开发者定义逻辑 | --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值