一文读懂RAG、LangChain、Agent 到底有啥关系?
假设你是一名企业合规产品经理,接到一份合规同事的请求:
我们公司是否符合 ISO-27001 第九条?请给一份答处与原文引用。
为了找到答案,我们需要理解标准条文、定位内部制度文档、比对内容差异,甚至进一步追问第三方系统中是否存在冲突证据。
这些能力,是一个完整的信息检索、信息整合以及总结输出的过程,那么,一个 LLM 应用,怎样才能处理这种合规级别的任务?
我们先看下这张图
可以在中使用LangChain框架中,使用RAG技术来创建一个Agent,扮演特定的角色专门解决用户的特定需求。
在此过程中,🧠 Agent 是思考者,🔧 LangChain 是协调者,📃 RAG 是资料员。
01
RAG:让模型“查得到”正确的信息
在任何大模型应用中,“知识不足”是第一堵墙。即便你的模型很强,但它本身未必知道企业自己的制度、合同、标准,也不具备最新行业法规。RAG(Retrieval-Augmented Generation)就是用来解决这个问题的。
<