【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查

  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

在这里插入图片描述


目前为止,我们实现的RAG练习中,答案都是全部来源于检索到的文本内容。而检索过程可能在某些情况下是不需要的。

如何优化这个过程,让我们的RAG程序在必要时才去检索,不必要时,直接使用大模型原有数据来回答呢?本文我们一起来学习下。

本文我们将使用 LangChain 的 Agents 模块来将 Retriever 当作工具,让大模型在有必要时才去使用它。

0. 实现 Retriever

首先我们得现有一个Retrivever,才能在有需要时能够进行查询。搭建Retriever的过程就不展开了,前面我们已经做了非常多的练习,具体可以参考这篇文章:【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()

1. 实现 Retriever Tool

通过 LangChain 自带的 create_retriever_tool 来将 Retriever 封装成一个可供 Agents 模块调用的 Tool。

create_retriever_tool 在使用过程中,最重要的是第三个参数,这是你这个工具的描述,这个描述相当于一个Prompt,将决定大模型是否会调用这个工具。

from langchain.tools.retriever import create_retriever_tool

tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]

关于LangChain中 Agents 模块如何定义Tool,详细教程可参考:
【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

2. Prompt模板和模型加载

from langchain import hub

prompt = hub.pull("hwchase17/openai-tools-agent")

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0)

这块没有特别注意的,就是将需要的元素都创建好,供后面创建 Agent 使用。

看一眼加载的Prompt模板内容:

在这里插入图片描述

  • 小Tips:打印Prompt模板内容,可以使用 prompt.pretty_print() 函数,将打印成上图中比较美观的样子。

3. 创建 Agent 和 Agent 执行器

准备好 llm、tools、prompt之后,创建Agent 和 AgentExecutor

from langchain.agents import AgentExecutor, create_openai_tools_agent

agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

其中 create_openai_tools_agent,是 LangChain 对于使用 OpenAI 工具的Agent的封装:

def create_openai_tools_agent(
    llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate
) -> Runnable:
    """Create an agent that uses OpenAI tools.

    Args:
        llm: LLM to use as the agent.
        tools: Tools this agent has access to.
        prompt: The prompt to use. See Prompt section below for more on the expected
            input variables.

其实现原理,就是将 tools 首先转换成OpenAI格式的工具描述,然后与 OpenAI 大模型进行绑定(源码中的这一句:llm_with_tools = llm.bind(tools=[convert_to_openai_tool(tool) for tool in tools]))。这是 Function Calling 部分的知识,不了解的可以补一下:【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

4. 完整代码及运行结果

4.1 运行代码

调用 invoke 接口即可运行。

result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])

result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

4.2 完整代码

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()

from langchain.tools.retriever import create_retriever_tool

tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]

from langchain import hub

prompt = hub.pull("hwchase17/openai-tools-agent")

prompt.pretty_print()

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0)

from langchain.agents import AgentExecutor, create_openai_tools_agent

agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})

print(result["output"])

result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)

print("output2: ", result["output"])

4.2 运行结果与解释

第一个问题,简单打个招呼,这时候不需要也不能去查文本,应该直接使用大模型自身的能力来回复。
在这里插入图片描述

第二个问题,涉及 Agents 相关知识,需要调用 Retriever 去查询相关资料,利用资料去回复。

在这里插入图片描述
在这里插入图片描述

本文参考教程:https://python.langchain.com/docs/use_cases/question_answering/conversational_retrieval_agents

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜同学小张 🙏

本站文章一览:

在这里插入图片描述

  • 12
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
模型+RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的方法,用于实现数据采集。具体步骤如下: 1. 数据收集:首先需要收集大量的原始数据,可以是文本、图像、音频等形式的数据。这些数据可以从互联网、数据库、文档等多个渠道获取。 2. 数据预处理:对收集到的原始数据进行预处理,包括数据清洗、去重、标注等操作。这一步骤旨在提高数据的质量和准确性,为后续的模型训练做准备。 3. 模型训练:使用大模型进行训练,可以选择使用预训练的语言模型(如GPT)或自定义的模型。在训练过程中,可以采用生成式对抗网络(GAN)等方法来增强模型的生成能力。 4. 检索模块构建:为了提高生成结果的准确性和相关性,需要构建一个检索模块。该模块可以使用传统的信息检索技术,如倒排索引、向量检索等,也可以使用深度学习方法,如BERT、Dense Retrieval等。 5. 数据采集:利用构建好的检索模块,对用户提出的问题或需求进行检索,获取与之相关的数据。可以根据检索结果的相关性进行排序,选择最相关的数据进行生成。 6. 数据生成:基于检索到的数据,使用大模型进行生成。可以采用生成式模型,根据检索到的数据进行文本、图像等内容的生成。生成的结果可以根据需求进行进一步的处理和优化。 7. 结果评估:对生成的结果进行评估,可以使用人工评估或自动评估的方式。评估指标可以包括生成结果的准确性、流畅性、相关性等。 8. 迭代优化:根据评估结果,对模型和检索模块进行优化和调整。可以通过增加训练数据、调整模型参数、改进检索算法等方式来提升系统的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值