LLM之LangChain(二)| LangChain中的Agent

       在本文中,我们将讨论LangChain中的Agent及其各种类型。但在深入研究Agent之前,让我们先了解一下什么是LangChain和Agent。

一、什么是LangChain?

       LangChain是一种功能强大的自动化工具,可用于各种任务,它提供了可用于创建agent的各种工具。

Agents:agent是一种旨在与现实世界交互的软件程序。LangChain提供不同类型的代理商。

Tools:LangChain提供有助于开发agent的工具。

要了解更多关于LangChain的信息,可以参考:https://www.c-sharpcorner.com/article/getting-started-with-langchain/

二、什么是Agent?

       LangChain中的Agent是为了与现实世界互动而构建的,它们可以自动执行任务并参与现实世界的场景。LangChain代理可用于各种任务,如回答问题、生成文本、翻译语言、总结文本等。

三、LangChain中的代理类型

       LangChain中的Agent使用LLM(语言学习模型)来确定要采取的操作以及顺序。

3.1 Zero-shot ReAct

       Zero-shot ReAct Agent是一种语言生成模型,即使不经过特定数据的训练,也可以创建真实的上下文。它可以用于各种任务,如生成创造性的文本格式、语言翻译和生成不同类型的创造性内容。

from langchain.agents import initialize_agent, load_tools, AgentTypefrom langchain.llms import OpenAIllm = OpenAI(openai_api_key="your_api_key")tools = load_tools(["wikipedia", "llm-m
### 如何在LangChain中自定义LLM以创建代理 #### 自定义LLM的基础概念 为了实现特定功能的代理,需要对基础的大规模语言模型(LLM)进行定制化调整。这不仅涉及微调预训练模型参数来适应具体应用场景的需求,还包括设计能够有效利用这些改进后的模型能力的应用逻辑框架。 #### 微调大规模语言模型 当考虑基于LangChain平台构建个性化服务时,可以采用迁移学习的方法对现有的大模型实施针对性优化。此过程通常围绕着准备高质量领域专用语料库展开,并借助该资源执行监督式或半监督式的再训练流程[^1]。 ```python from langchain import LangChainModel model = LangChainModel.load_pretrained('base_model') fine_tuned_model = model.finetune(training_data=custom_dataset) ``` #### 构建应用层接口 除了提升底层的语言理解与生成性能外,还需搭建一套完整的交互体系以便更好地服务于最终用户。这意味着要精心规划对话管理策略、意图识别机制以及实体提取规则等要素之间的协作方式。 对于具体的Rasa集成实例而言,则需关注`domain.yml`文件内的配置项设置,比如定义好所有可能涉及到的状态槽位(slots),并合理安排各类响应模板(responses);同时也要确保动作(actions)的设计能充分满足业务场景下的复杂需求处理要求。 #### 配置管道与政策 另外,在`config.yml`里指定恰当的数据处理管线(pipeline)组合形式和决策制定方针(policies),有助于进一步增强系统的整体表现力。特别是针对自然语言理解(NLU)部分所做的专项强化措施,往往能在很大程度上决定整个解决方案的成功与否。 ```yaml pipeline: - name: "WhitespaceTokenizer" - name: "CountVectorsFeaturizer" policies: - name: "TEDPolicy" epochs: 100 ``` #### 实践操作指南 最后,通过实际编码练习加深理论认知是非常必要的环节之一。例如尝试完成电影推荐系统中的评分关联特性(join movie and rating functionality): ```python def join_movie_and_rating(movie_id, user_ratings): # Implement logic here based on fine-tuned LLM capabilities. pass ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值