CVPR 2025 | 遥感图像目标检测最新论文曝光,每一篇都值得深扒,有想法的速冲!!!

在遥感信息处理领域,遥感图像目标检测始终是CVPR、IEEE TGRS等顶级学术平台的研究焦点,在灾害监测、军事侦察等关键领域发挥着重要作用。近年来,随着深度学习技术的不断革新,该领域涌现出一系列突破性成果。

SuperYOLO创新性地融合光学、SAR等多模态数据,构建高分辨率检测框架,不仅大幅提升了检测精度,还将模型参数量锐减至原来的1/18,有效克服了传统模型计算复杂、漏检率高的难题。SOAR算法则巧妙结合Mamba与YOLOv9,利用长序列建模能力精准捕捉微小目标的长距离依赖关系,在精度与效率上均达到行业领先水平。

尽管已取得诸多进展,但复杂背景干扰、目标尺度差异大、标注数据稀缺等挑战依然存在。为此,我们精心整理了十几篇附有代码的最新顶会论文,内容涵盖算法优化、数据增强等前沿方向,希望能为该领域的研究者提供有益参考。

点击【AI十八式】的主页,获取更多优质资源!

【论文1】AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation

Generated images with our proposed AeroGen. AeroGen enables the input of both horizontal and rotated bounding box layout conditions, facilitating accurate remote sensing image layout generation.

Generated images with our proposed AeroGen. AeroGen enables the input of both horizontal and rotated bounding box layout conditions, facilitating accurate remote sensing image layout generation.

1.研究方法

 AeroGen’s overall architecture

AeroGen’s overall architecture

该论文提出布局可控的扩散生成模型 AeroGen,先通过基于 LDM 在遥感数据集上微调得到模型权重,利用布局嵌入、布局掩码注意力等机制实现基于预设布局条件生成高质量遥感图像;再构建包含标签生成、过滤,图像生成、过滤及数据增强的生成管道,为下游遥感图像目标检测任务合成高质量数据。

2.论文创新点

 Overview of the pipeline based on AeroGen

Overview of the pipeline based on AeroGen

  1. 支持多种布局条件生成:AeroGen是首个同时支持水平和旋转边界框条件生成的模型,能生成符合特定布局和对象类别要求的高质量合成图像,满足遥感图像目标检测多样化需求。

  2. 设计端到端数据增强框架:该框架集成多样性条件生成器和过滤机制,直接合成遥感图像目标检测数据,避免额外实例粘贴过程,提升生成数据的多样性和质量,实现端到端数据增强 。

  3. 提升检测模型性能:实验表明,AeroGen生成的合成数据可显著提高现有遥感图像目标检测模型性能,在多个数据集上mAP指标提升明显,稀有对象类别的检测性能也显著改善。

论文链接:https://arxiv.org/abs/2411.15497

【论文2】Learning to Holistically Detect Bridges From Large-Size VHR Remote Sensing Imagery

 Illustration of GLH-bridge’s characteristics

Illustration of GLH-bridge’s characteristics

1.研究方法

The pipeline of the proposed HBD-Net. It contains the proposed SDFF architecture and SSRW strategy 在遥感图像桥梁目标检测研究中,本文提出了一种全新的理论方法。一方面,构建了GLH - Bridge大规模数据集,从全球多源采集6000幅尺寸在2048×2048至16384×16384像素的超高分遥感影像,涵盖59737座桥梁,采用水平和旋转边界框进行精细标注。另一方面,设计了HBD - Net网络,其SDFF架构基于动态图像金字塔(DIP),通过独立检测器处理图像并利用层间特征融合(IFF)模块整合多尺度信息;同时,运用形状敏感样本重加权(SSRW)策略,依据桥梁纵横比差异调整回归权重,从而实现对大幅面超高分遥感影像中多尺度桥梁的高效整体检测。

2.论文创新点

Illustration of the proposed IFF module. The figure illustrates the ways of feature fusion between two adjacent layers.

Illustration of the proposed IFF module. The figure illustrates the ways of feature fusion between two adjacent layers.

  1. 数据集创新:构建的GLH - Bridge数据集是目前针对大幅面超高分遥感影像桥梁目标检测领域规模较大、影像尺寸范围广且标注精细的数据集,为该领域研究提供了有力的数据支撑,填补了数据方面的空白,且已开源促进研究发展 。

  2. 网络架构创新:HBD - Net的SDFF架构能在有限计算资源下,实现大幅面图像整图输入及多尺度目标分治处理,解决了因显存限制切块导致目标完整性破坏及标签碎片化等问题 。

  3. 训练策略创新:形状敏感样本重加权(SSRW)策略,针对遥感图像中桥梁目标纵横比多样的特点,有效提升了极端纵横比桥梁目标的检测精度 。

论文链接:https://www.sciencedirect.com/science/article/pii/S1569843224005971

 点击【AI十八式】的主页,获取更多优质资源!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值