当下,扩散模型在生成任务里表现非常亮眼,可时间序列预测却被数据稀疏、长程依赖建模难等问题困扰。要是把它们俩结合,会发生什么呢?
最近,TimeDiT和RATD两篇论文带来了新思路。TimeDiT融合Transformer和扩散模型,用统一掩码机制适配多种时间序列任务,还融入物理知识,让生成样本更靠谱。RATD首次引入检索增强机制,靠相似样本优化扩散模型去噪,预测更精准。从特点上看,TimeDiT主打通用性,一个模型搞定补全、预测、生成等任务;RATD则专注优化数据利用,检索历史数据来提升推理能力,在复杂任务上比传统扩散模型更强。
扩散模型潜力无限,时间序列预测在多个领域又至关重要。我给大家找了【12篇】相关论文,希望能为你的研究带来新灵感,也欢迎分享给身边的朋友~
【论文 1】TIMEDIT: GENERAL-PURPOSE DIFFUSION TRANSFORMERS FOR TIME SERIES FOUNDATION MODEL
1.研究方法
论文提出了 TimeDiT 模型,对多元时间序列问题进行统一建模。借助扩散模型和 Transformer 架构,通过统一掩码机制开展自监督学习,并且在采样时能够融入物理知识,以此来解决多种时间序列任务。
2.论文创新点
PCA Evaluation of Synthetic TSD from TimeDiT and other baselines on the sine dataset
-
架构融合革新:创新性地将 Transformer 和扩散模型融合在一起,统一掩码机制使其能够处理多种时间序列任务,打破了传统模型的局限。
-
知识注入革新:开发出无需对模型进行编辑的物理知识注入方法,以物理方程作为先验,确保生成的样本符合物理定律,提高了模型的实用性。
-
实验验证革新:从多个角度进行全面的实验评估,在零样本、微调等多种设置下都展现出卓越的性能、跨任务适应能力和领域知识融合能力。
【论文2】Retrieval-Augmented Diffusion Models for Time Series Forecasting
1.研究方法
论文提出了检索增强时间序列扩散模型(RATD),首先基于嵌入检索机制,利用预训练编码器寻找相似的参考样本,然后通过参考引导的时间序列扩散模型及 RMA 模块,利用参考信息指导去噪,从而完成时间序列预测。
2.论文创新点
The structure of µθ
-
引入 RATD 框架:首次将检索增强机制应用于时间序列预测,充分利用数据集,解决了现有模型指导不足和数据利用不充分的问题。
-
设计 RMA 模块:设计了 RMA 模块来融合多种特征,为去噪过程提供合理的指导,在提升性能的同时控制计算成本。
-
实验效果优异:在多个数据集上进行实验,RATD 相比基线方法取得了更出色的效果,在复杂任务中的优势尤为明显。
需要论文合集和代码资料的
看我主页【时序之心】