Gartner《生成式人工智能系统的解决方案路径》学习心得

2025年,Gartner发布了《 Solution Path for Implementing Generative AI Systems》

核心观点

  • GenAI 实施现状与挑战 :许多组织在实施生成式人工智能(GenAI)时过程混乱,因技术组件不成熟、不稳定且不可靠,分布式、跨职能的 AI 团队在构建、部署和启用成功的 GenAI 系统方面面临困难。GenAI 应用涵盖多种部署模型,包括商业解决方案和定制解决方案,每种都需要不同的技能组合。目前许多在开发中的 GenAI 应用距离生产就绪还很遥远,存在成本高、输出差、数据泄露、幻觉、扩展不足和性能不一致等问题,会侵蚀用户信任,需要 AI、软件工程、数据、安全以及基础设施和运营(I&O)团队等多技术团队解决。

  • 成功实施的关键因素 :成功的 GenAI 实施需与价值生成、治理、复用和整个组织的 GenAI 能力民主化等最终目标保持一致。需通过结构化的流程来实施构建和购买的 GenAI 解决方案,正式化该流程需要产品和平台团队的大量输入,包括分析专家。

  • 技术与人才要求 :GenAI 技术复杂,要求从业人员具备不同以往机器学习的新技能,如提示工程、RAG 管道等。且随着领域快速发展,跟上其速度和变化对技术专业人士来说极具挑战,需分块学习、小组学习、实践项目等来提升对 GenAI 的理解和能力。

Solution Path 介绍:

详细步骤

  • Step 1: Launch(启动)

    • Prework(前期准备)

      • 获取组织批准 :需获得业务领域领导、法律、隐私、安全、软件工程和数据部门等多方相关方的批准,他们有不同的需求和优先级,可能对最优先投资的 GenAI 项目意见不一。要与相关方和领导合作,确定用 GenAI 解决的真实问题。

      • 领导层批准 :争取高层管理人员支持,对确认项目在组织中的重要性和优先级至关重要。

      • 法律和隐私审查 :与法律和隐私团队合作,确保项目或产品符合所有相关法律和公司政策,包括数据使用、知识产权保护和用户同意等方面,特别是敏感信息处理。

      • 安全团队输入 :与安全团队合作,解决潜在风险并确保有强大安全措施,包括数据保护、访问控制和风险管理。

    • Understand GenAI(理解 GenAI) :组织在实施前需全面了解 GenAI 的演变、可能性、复杂性和局限性,包括其核心概念、组件、实现方法等,这有助于构建正确策略和设定合理期望。可参考 Gartner 的相关研究报告来深入了解 GenAI 的各个方面。

    • Assess skill sets for executing GenAI projects(评估 GenAI 项目执行所需的技能集) :根据组织选择的部署模型,GenAI 需要不同的技能集。内置 AI 或 BYOAI 场景下,需集成、配置、治理和管理系统的技能;构建 AI 场景下,需深入理解 GenAI 系统的技能 。且敏捷团队需具备 API 集成、数据科学软件开发、数据工程、安全和云基础设施等核心技能,以及软件工程、数据工程、云基础设施和运营、身份管理和安全等新技能领域。

  • Step 2: Pilot(试点)

    • Understand GenAI business use cases(理解 GenAI 业务用例) :通过一系列 POC(概念验证)实验工具和技术,验证在构思过程中确定的业务用例的可行性,这是战略投资交付 GenAI 平台之前的关键步骤。需定义业务用例类别,并与 GenAI 野心对齐,确定对组织最有用的 AI 能力。常见的 GenAI 用例包括客户 / 员工互动、内容生成、AI 代理 / 助手和开发人员生产力等。

    • Implement the pilot GenAI solution(实施试点 GenAI 解决方案) :根据业务用例,组织需开发可试点的 GenAI 解决方案来评估假设。构建场景下,可实施简单 RAG 系统;购买场景下,可在现有应用能力上开发 RAG 解决方案。需具备构建 LLM 驱动应用的技能。

    • Evaluate outcomes(评估结果) :评估是 GenAI 系统开发的重要且具挑战性部分。对于构建或购买的系统,可能需要多种评估类型,如系统、组件、试点项目、生产 / 影响和项目评估等。在试点阶段,需避免构建过多评估,但要收集反映 AI 系统质量 / 性能、改进机会的输入。

    • Scale pilots to evaluate implementation, tools and technologies(扩展试点以评估实施、工具和技术) :AI 架构师通常需评估大量 GenAI 用例、技术和解决方案,需同时评估工具、技术和策略。根据技能集、设计灵活性、成本和时间线等因素选择实施方式,决定构建还是购买。

  • Step 3: Productize(产品化)

    • Build, buy or embed GenAI applications(构建、购买或嵌入 GenAI 应用) :经过试点阶段并验证 GenAI 解决方案的结果后,组织需要构建、购买或嵌入 GenAI 应用。要了解简单解决方案的逻辑层,如基础模型、微调等。且在构建 LLM 驱动应用时,需克服选择正确组件、构建 LLM 驱动功能、评估 LLM 输出、持续改进应用等挑战。

    • Build GenAI processes and operating models(构建 GenAI 流程和运营模式) :在大型组织中,AI 架构师需从交付角色转变为标准化和改进角色,指导流程、运营模式、治理和扩展。可设立 GenAI 卓越中心(COE),作为与业务合作伙伴互动的赋能团队,创建实施企业级 GenAI 战略的标准和实践。COE 的职责包括推动 GenAI 实施、构建标准设计模式、与基础平台团队合作构建可重用服务、提供 GenAI 成本和价值优化的最佳实践等。

    • Build platforms that offer common service abstractions(构建提供通用服务抽象的平台) :平台团队需与合作伙伴和相关方合作,了解多层技术栈的关键需求,定义和交付平台内的“即服务”能力。需处理诸如有效配置平台资源、组织人员开发和运营新 GenAI 服务和应用、从多个独立开发和交付流水线部署等挑战。正确的服务抽象很关键,早期 GenAI/AI 开发可能需要较少服务,随着 GenAI 实施扩展,平台投资扩展至关重要。

  • Step 4: Scale(扩展)

    • Refine GenAI governance(完善 GenAI 治理) :GenAI 治理框架需考虑多个问题,如如何在保持复用、效率和数据资产治理的同时,允许业务部门更敏捷地自主开发和 / 或实施 GenAI 产品等。需使用治理委员会编写和执行 TRiSM 实践,随着 AI 计划规模扩大,还需使用 TRiSM 技术来机械化 AI 政策,如防止 AI 访问敏感数据、检查输出和过滤不当内容等。

    • Implement and improve value measurement(实施并改进价值测量) :价值测量需不断细化,可将 GenAI 投资视为投资组合,与同行一起调整投资规模。需对使用案例的雄心和预期收益进行分类,并投资变革管理以确保获得收益。可参考 Verizon 的使用案例价值框架,从采用监控、性能监控和业务成果的领先指标等维度进行评估。

    • Enhance AI engineering capabilities(增强 AI 工程能力) :大规模 AI 工程需要在整个技术堆栈中进行能力投资,以实现个体层面、运营和流程层面以及业务层面的改进。需构建具备组合 AI、复杂数据预处理、连接的元数据丰富数据服务等特性的 AI 工程能力,且某些学科是规模独立的,需要许多技术团队继续致力于构建有效的 AI 系统。

    • Continuously enhance the GenAI architecture and product portfolio(持续增强 GenAI 架构和产品组合) :GenAI 系统大多处于起步阶段,AI 架构师需不断改进 GenAI 架构,如实施基于 LLM 的代理模式、利用 SLM、知识图谱等改进 GenAI 系统、部署先进的 GenAI 安全、增强 GenAI I&O 战略的稳健性等。

    • Improve GenAI evaluations(改进 GenAI 评估) :从原型过渡到可靠的生产解决方案需要严格的评估,包括计算性能指标、了解特定失败并迭代模型参数。设计 GenAI 评估策略时,需识别需要测试的具体内容,避免将 GenAI 系统视为通用解决方案,要分析 AI 工作流程的全局和局部元素,定义“好”的标准,可使用真实数据评估,也可采用合成测试数据。评估时可综合运用人类评估者和机器评估器,如 LLM 作为法官、基于嵌入的评估等。

  • Step 5: Democratize(普及化)

    • Drive effective change management and GenAI adoption(推动有效的变革管理并促进 GenAI 采用) :组织常低估变革管理对成功采用 GenAI 的必要性。领导团队对采用便利性的期望与人类实际采用技术的体验大相径庭,可能导致变革疲劳。为增加 GenAI 应用采用率,GenAI 赋能团队需帮助用户管理变革,采用多种变革管理技术,如介绍性培训课程、反馈会议等。

    • Embed GenAI products and platforms throughout the organization(在整个组织中嵌入 GenAI 产品和平台) :除了优化外,要实现 GenAI 普及化,需使多个开发团队能够实施解决方案而不依赖中央 GenAI 团队。可构建 AI 入职能力,链接到云最佳实践,采用正确的财务管理实践,如选择战略提供商、添加战术提供商、决定工作负载放置位置等,以优化 GenAI 成本。

其他关键内容

  • GenAI 部署模型 :包括嵌入式 AI、构建式 AI 和自带 AI(BYOAI),不同模型对技能要求不同。组织需根据自身情况选择合适的部署模型,如嵌入式 AI 通常由软件供应商集成到企业应用中,构建式 AI 是由组织内部团队开发,BYOAI 是各部门采购和使用的封装 AI 软件和能力。

  • GenAI 用例 :Gartner 提供了多种行业的 GenAI 用例比较工具,如银行业的 GenAI 用例比较、政府联络中心的 GenAI 用例比较等,帮助组织了解行业动态并确定最有用的 AI 能力。

  • GenAI 技术挑战 :LLM 驱动的应用面临成本高、响应慢、不可靠等问题,其不可预测性、脆弱性和非确定性使得开发和部署更具挑战性,即使是小的提示更改也可能显著改变模型性能,且难以理解原因。

  • AI 治理与安全 :需将法律、风险管理和合规部门等整合到 AI 治理框架中,使用 TRiSM 技术来强制执行 AI 政策,如防止 AI 访问敏感数据、检查输出等。AI 安全平台可用于启动 AI 安全策略,需考虑 GenAI 采用的顶级安全威胁和风险,如数据泄露、模型中毒、提示注入等,并采取相应的缓解措施。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值