NLP学习路线图(三十一): 迁移学习在NLP中的应用

迁移学习(Transfer Learning) 的引入,犹如为NLP领域注入了一剂强心针。其核心思想是将从一个任务(源任务)中学到的知识(如对语言结构、词汇含义的理解)迁移到另一个相关但数据可能稀缺的新任务(目标任务)上,从而显著提升新任务的性能和学习效率。而在NLP领域,预训练语言模型(Pre-trained Language Models, PLMs) 已成为实现大规模、高效迁移学习的最强大载体。

一、预训练语言模型:迁移学习的超级引擎

预训练语言模型的核心范式是 “预训练 + 微调” (Pre-training + Fine-tuning)

  1. 预训练 (Pre-training):

    • 目标: 在大规模、无标注的通用文本语料库(如整个维基百科、海量网页文本、书籍)上训练一个模型。

    • 任务: 模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值