迁移学习(Transfer Learning) 的引入,犹如为NLP领域注入了一剂强心针。其核心思想是将从一个任务(源任务)中学到的知识(如对语言结构、词汇含义的理解)迁移到另一个相关但数据可能稀缺的新任务(目标任务)上,从而显著提升新任务的性能和学习效率。而在NLP领域,预训练语言模型(Pre-trained Language Models, PLMs) 已成为实现大规模、高效迁移学习的最强大载体。
一、预训练语言模型:迁移学习的超级引擎
预训练语言模型的核心范式是 “预训练 + 微调” (Pre-training + Fine-tuning):
-
预训练 (Pre-training):
-
目标: 在大规模、无标注的通用文本语料库(如整个维基百科、海量网页文本、书籍)上训练一个模型。
-
任务: 模
-