一文讲完17种提示词工程(prompt engineering)方法

上周周末参加了校友会的年会,是在上海虹桥附近的一家很有特色的大酒店。

期间的茶歇,由于昨晚没睡好,就想着去拿一杯咖啡解解乏。

我一手拿着手机在看一份报告,一手想去服务员托盘上拿一杯奶咖,结果无意碰到了另一只手。

「不好意思」,我连忙跟人道歉。校友笑了笑,倒是关注起了我手机中的报告。我们寒暄了几句,他就问我要了报告仔细翻阅,越看越惊讶,连连追问我是怎么做到的。

他最近正在为写方案发愁,看了我用 AI 生成的这份报告后,直呼「太厉害了」,还赶紧向我讨教使用技巧。

这不禁让老王开始反思,是怎么做到让 AI 更「懂」我的? 好像也只是简单地输入一些关键词,它就能理解意图,输出文字内容,很多时候超出使用者的预期。

这一切的背后,都离不开提示工程。准确地说,是一套规则和方法,通过不同的提示词技巧,来激发AI模型的潜力。

接下来,老王将按自己实操过程中的理解,分重点给大家介绍 17种提示词规则方法,带你一起体验提示工程的魅力。

提示词规则

零样本提示

可在没有提供任何示例的情况下,直接指示模型完成任务的方法。核心思想是,凭借大模型在海量数据中学习到的通用知识和能力,直接理解任务要求并给出正确的答案。

案例

# prompt``将情绪分类为中性、负面或正面。``文本:我今天太开心了!``情感:

少样本提示

利用大型语言模型 (LLM) 的能力,通过在提示词中提供少量示例,来引导模型完成特定任务的方法。与零样本提示不同,少样本提示通过示例来帮助模型理解任务的模式和规则,进而更准确地生成符合要求的输出。

案例

# prompt``“whatpu”是坦桑尼亚的一种小型毛茸茸的动物。``一个使用whatpu这个词的句子的例子是:我们在非洲旅行时看到了这些非常可爱的whatpus。``   ``“farduddle”是指快速跳上跳下。``一个使用farduddle这个词的句子的例子是:

链式思考(COT)提示

通过在提示词中引导大型语言模型 (LLM) 逐步进行推理,来解决复杂问题。CoT 提示鼓励模型一步一步地思考,模拟人类的推理过程,从而提高多步推理和逻辑分析类任务的表现。

案例

# prompt``这组数中的奇数加起来是偶数:4、8、9、15、12、2、1。``A:将所有奇数相加(9、15、1)得到25。答案为False。``这组数中的奇数加起来是偶数:15、32、5、13、82、7、1。``A:

更夸张的是,只需要把**「让我们逐步思考」加入进去,就可以起效。这种称之为「零样本** COT 提示」

# 反面案例``# prompt``我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?``# output``1个苹果``   ``# 利用COT得到正确答案``# prompt``我去市场买了10个苹果。我给了邻居2个苹果和修理工2个苹果。然后我去买了5个苹果并吃了1个。我还剩下多少苹果?``让我们逐步思考。``# output``首先,您从10个苹果开始。``您给了邻居和修理工各2个苹果,所以您还剩下6个苹果。``然后您买了5个苹果,所以现在您有11个苹果。``最后,您吃了1个苹果,所以您还剩下10个苹果。

现在很多模型已经暗含了 COT 模式,分析非常细。

检索增强生成(RAG)

通过结合外部知识库的检索和大型语言模型 (LLM) 的生成能力,来提高LLM在知识密集型任务上的表现。

RAG 先从外部知识库中检索相关信息,然后利用检索到的信息进行生成,从而实现与事实更加一致,生成的答案更可靠,还有助于缓解「幻觉」问题。

案例

使用 LangChain 构建 RAG(检索增强生成)应用:https://python.langchain.com/docs/tutorials/rag/

主要包括以下步骤:

加载文档 (Loading documents): 从各种来源加载数据,例如文本文件,网页等。``分割文本 (Splitting text): 将文档分割成更小的文本块,以便于检索。``创建向量嵌入 (Creating embeddings): 将文本块转换为向量表示,以便于计算相似度。``存储向量 (Storing vectors): 将向量存储到向量数据库中,以便于快速检索。``检索相关文档 (Retrieving relevant documents): 使用用户的查询从向量数据库中检索相关的文本块。``利用LLM生成答案 (Generate answer with LLM): 将检索到的文本块和用户查询组合成提示,并使用 LLM 生成最终答案。

自我反思 Reflexion

通过让大型语言模型 (LLM) 对其自身的输出进行反思和迭代,来提高LLM在复杂任务上的表现。反思提示鼓励模型先生成一个初步答案,然后对该答案进行评估和反思,再反思结果进行改进,迭代生成最终的答案。

案例

除了上述 5 个规则,还有 12 个重要的规则如下:

  1. 自我一致性

  2. 生成知识提示

  3. prompt chaining

  4. 思维树(TOT)

  5. 自动推理并使用工具(ART)

  6. 自动提示工程师

  7. 主动提示

  8. 方向性刺激提示

  9. PAL程序辅助语言模型

  10. ReAct框架

  11. 多模态思维链提示

  12. 基于图的提示

上述老王实战中使用频率不高,所以篇幅限制就不在此展示了。有想学习的伙伴可以关注本号,后台回复括号内关键词【17个提示词方法】免费获取2w字

总结

AI 目前还是非常考验使用者的。

如果掌握了更多的底层方法论,就能更好的融入日常工作。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值