(请先阅读“数维杯大学生数学建模挑战赛论文格式规范”)
C题 清明时节雨纷纷,何处踏青不误春?
清明节,在每年4月4日至6日之间,既是自然节气,也是我国重要的传统节日,承载着中华民族千年的文化记忆与情感寄托。此时草木萌动、百花盛开,自然界呈现一派生机勃勃的景象。中国南方地区,已呈气清景明之象;北方地区开始断雪,气温上升,春意融融。人们多以踏青春游和扫墓祭奠的方式过清明,让这个传统节日同时兼具了自然和人文两大内涵。
每逢此时,冷空气势力逐渐减弱,海洋上的暖湿空气开始活跃北上。清明前后,冷暖空气经常在江南地区交汇,天空往往飘起绵绵细雨,使得“清明时节雨纷纷”成为人们口耳相传的诗句。然而,不同地区受地形、大气环流、海陆位置等因素影响,降雨情况也存在着显著差异。
清明时节,杏花、油菜花、杜鹃花、樱花、牡丹等花卉从南至北接力绽放,构成春日独特的风景线。然而,花期易受气温、光照、降水等气象因子的影响,具有较强的不确定性。如何欣赏到开得最绚丽的花朵,是人们踏青赏花时最为关心的问题。
近年来,随着文旅产业的蓬勃发展,清明假期成为人们亲近自然、体验传统文化的黄金时段。如何精准把握清明时节的气象规律,深度挖掘其文旅价值,成为亟待解决的重要课题。
(一).需要解决的问题:
请用气象学、天气学或物候学的观点赏析该诗句,并进行如下问题建模:
基于天气现象分类标准,明确“雨纷纷”对应的降雨量区间及降雨持续时间范围。根据天气学的基本知识,在适当简化的基础上,建立数学模型,分析 2026 年清明假期西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳会“雨纷纷”吗?利用近20年的天气资料分析 2025 年清明的天气情况,验证所建模型的合理性。给出利用最新的天气实况进行。
1.明确问题:
“雨纷纷”标准,我们先去查阅气象行业的标准文件。在里面找到关于降雨的分类,像小雨、中雨、大雨这些的划分依据。一般来说,把降雨量在0.1-9.9毫米/天,降雨持续时间超过3小时的情况,定为“雨纷纷”。
2.数据收集:
从美国国家海洋和大气管理局(NOAA)的网站,还有天气网这两个地方,收集西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳这七个城市近20年的天气资料。气温、气压、湿度、风速这些气象要素的数据。
变量:①温度:高低温变化影响水汽蒸发和凝结,低温时水汽易凝结降。②日温差:夜晚降温快,水汽易饱和降雨。③湿度:空气湿度高表明水汽含量充足,是降雨的必要条件之一。④气压:高气压区气流下沉,天气晴朗;低气压区气流上升,水汽易冷却凝结致雨。⑤风速和风向:风可输送水汽,特定风向从水汽源地吹来,且风速适宜时,利于水汽汇聚形成降雨。
3.数据处理
①处理缺失值:数据里可能有些地方是空缺的。用这几个城市其他时间的平均气温、中位数这些来补上,也可以用K近邻算法,找和它情况差不多的样本的数据来填上。
②处理异常值:有些数据可能和其他的差别特别大我们用统计方法,比如Z-score方法,或者机器学习里的孤立森林算法,把这些异常值找出来,要么修正,要么干脆不要。
③编码分类变量:像天气状况,有晴天、阴天、雨天这些,模型不太能懂这些文字,所以我们用独热编码的办法,把它们变成数字,。
4.特征工程
①提取特征:从收集来的数据里,挑出和降雨关系大的特征。比如前面几天的降水情况、温度是怎么变化的、高低压系统在什么位置,还有湿度的变化梯度。
②计算特征:用滑动窗口法,算一算过去几天的平均降水量、温度差、湿度差。
5.模型选择与训练
①选择模型:随机森林模型。能处理很多不同类型的数据,对那些不太正常的数据也不“害怕”,而且不用对数据的分布有特别严格的要求。
②划分数据集:把处理好的数据按照 7:3 的比例分成两部分,70% 用来训练模型,就像让模型学习知识;30% 用来测试模型
③训练模型:用训练集的数据让随机森林模型学习。同时,用网格搜索或者随机搜索的办法,给模型找最合适的参数,像决策树的数量、树的最大深度、最小样本分裂数这些。
随机森林模型公式:
回归问题:
这里的X就是我们输入的气象数据,N是决策树的数量,fi(X)是第i棵决策树对X的判断结果,F(X)就是整个随机森林模型给出的最终结果。
分类问题:
就是让所有决策树“投票”,哪个结果得票多,就是最终结果。
6.模型评估
用测试集的数据来看看模型的表现。算一算准确率、召回率、F1 值、均方误差这些指标。准确率就是模型猜对的比例;召回率是把该找出来的都找出来的比例;F1值是综合考虑准确率和召回率的一个指标;均方误差就是模型预测结果和实际结果的差距的平方的平均值。通过这些指标,我们就能知道模型好不好用。
7.预测2026年清明假期降雨情况
收集2026年清明假期前最新的气象数据,按照前面处理历史数据的方法,对这些新数据也进行预处理和特征工程。然后把处理好的数据输入到训练好的随机森林模型里,模型就会告诉我们这七个城市在2026年清明假期会不会“雨纷纷”。
8.模型验证与修正
用2025年清明的实际天气情况,和模型预测的结果对比一下。算一算准确率、误差这些指标,看看模型预测得准不准。如果准确率高、误差小,就说明模型还挺靠谱;要是差得远,那就要想想办法改进。
最后小编想说,思路可以有无数条,但只有恒心去做一件事才能获得你们的大奖,谢谢各位读者耐心看完!!!