完整版看文末名片!
2025数维杯数学建模挑战赛选题建议+初步分析
提示:C君认为的难度和开放度评级如下:
难度:A题 > C题 > B题,开放度:C题 > B题 > A题。综合来看:A题需要多刚体动力学建模和复杂数值模拟;C题涉及多学科交叉(气象+物候+经济);B题以数据分析和优化为主,难度相对较低。
对于开放度而言,C题需结合气象预测、花期建模、旅游经济等多领域;B题涉及多目标优化和城市数据融合;A题问题较具体,建模自由度有限。
以下为ABC题选题建议及初步分析:(要注意的是,本次选题建议会给出每道题目的题目分析、第一问建模过程和推荐算法,然后根据学生不同的专业,针对性给出选题建议)。
综合评价:
数据分析偏好优先选择B题或C题:
- B题:适合处理多源城市数据(如西安的住宿、交通、景点),需设计优化算法(如动态规划)和空间分析(GIS工具)。
- C题:适合时序预测(如清明降雨)和跨学科建模(气象+经济),需结合Python的Scikit-learn/PyTorch库。
另外:A题适合有物理建模经验的团队,但对编程能力要求较高(需实现复杂微分方程)。C题开放度高,但需注意气象数据清洗和跨学科逻辑整合。
A题:空中芭蕾蹦床运动的力学行为分析
A题结合多刚体动力学、弹性力学和疲劳损伤理论,需构建运动员与蹦床的交互模型。第一问要求分析起跳瞬间的发力方向、大小与身体姿态关系,需融合生物力学和物理建模。难点在于多段刚体动力学方程的耦合求解和主动蹬伸力的动态模拟。此外,疲劳损伤分析需结合循环载荷下的材料性能退化模型。
C君建议的建模过程为:
推荐算法:强化学习(PPO算法):用于优化起跳动作策略,动态调整发力方向和姿态。物理信息神经网络(PINNs):嵌入动力学方程约束,加速多刚体系统的反问题求解。自适应网格有限元法:模拟蹦床的非线性弹性形变,提升接触力计算精度。
可以使用的可视化方法:力学参数热力图(Python Plotly 3D Surface)、疲劳损伤云图(ParaView有限元后处理)
此题专业性较强,适合有物理建模经验的团队,但对编程能力要求较高(需实现复杂微分方程)
B题:马拉松经济的高质量发展思路探索
B题要求融合城市科学、交通规划和数据驱动优化,核心是构建多目标赛事规划框架。第一问涉及气象、人口、历史数据挖掘,需通过时空关联分析筛选赛事窗口期。难点在于多源异构数据融合(气象时序数据、人口密度、交通网络)和动态约束下的多目标优化。
C君推荐的建模过程为:
推荐算法有:1 时空图神经网络(ST-GNN):捕捉城市气象与人口数据的时空关联性。2 多目标贝叶斯优化(MOBO):高效求解高维约束下的赛事规划问题。3 联邦学习(Federated Learning):跨城市数据隐私保护下的联合建模。
这道题目的数据处理是重中之重 大家需要认真去处理。计算量大,适合系统建模能力强的团队。需要处理多源城市数据(如西安的住宿、交通、景点),设计优化算法(如动态规划)和空间分析(GIS工具)。
C题:清明时节雨纷纷,何处踏青不误春?
C题聚焦气象学、物候学和经济学,构建跨学科预测模型。第一问要求量化“雨纷纷”的降雨特征并预测2026年清明天气。难点在于小样本气象数据的时序外推和区域气候模式耦合(如西安与吐鲁番的地形效应差异)。数据需要自己找,有参考的网站。
第一问前大家需要对数据进行分析和数值化处理,也就是EDA(探索性数据分析)。对于数值型数据,大家用归一化、去除异常值等方式就可以进行数据预处理。而对于非数值型数据进行量化,大家可以使用以下方法:
1标签编码
标签编码是将一组可能的取值转换成整数,从而对非数值型数据进行量化的一种方法。例如,在机器学习领域中,对于一个具有多个类别的变量,我们可以给每个类别赋予一个唯一的整数值,这样就可以将其转换为数值型数据。
2独热编码onehot
独热编码是将多个可能的取值转换成二进制数组的一种方法。在独热编码中,每个可能取值对应一个长度为总共可能取值个数的二进制数组,其中只有一个元素为1,其余元素均为0。例如,对于一个性别变量,可以采用独热编码将“男”和“女”分别转换为[1, 0]和[0, 1]。
3分类计数
分类计数是将非数值型数据转换为数值型数据的一种简单方法。在分类计数中,我们根据某些特定属性(比如学历、职业等)来对数据进行分类,然后统计每个类别的数量或频率。例如,在调查问卷中,我们可以对某个问题的回答按照“是”、“否”和“不确定”三个类别进行分类,并计算每个类别的数量或频率。
4主成分分析
主成分分析是将多维数据转换为低维度表示的一种方法。在主成分分析中,我们通过找到最能解释数据变异的主成分来对原始数据进行降维处理。这样就可以将非数值型数据转换为数值型数据。
而第一问建议大家使用一些可视化方法,可以使用常见的EDA可视化方法:
- 直方图和密度图:展示数值变量的分布情况。
- 散点图:展示两个连续变量之间的关系。
- 箱线图:展示数值变量的分布情况和异常值。
- 条形图和饼图:展示分类变量的分布情况。
- 折线图:展示随时间或顺序变化的趋势。
- 热力图:展示不同变量之间的相关性。
- 散点矩阵图:展示多个变量之间的散点图矩阵。
- 地理图:展示地理位置数据和空间分布信息。
C君推荐的建模过程:
可使用的算法:1 Transformer-XL:处理长序列气象数据,捕捉跨区域气候关联。2 深度概率网络(DeepAR):生成概率性降雨预测区间。3 元学习(MAML):适应小样本城市的天气模式迁移。
C题开放度高,但需注意气象数据清洗和跨学科逻辑整合。这道题目适合所有专业的同学进行选择,是本次比赛的首选题目。
其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方名片: