ComfyUI换背景工作流,相信大家已经并不陌生了,在xhs、B站上也有不少的教程和方法。在SDXL时代,偶尔也会快速换到满意的背景,但是毕竟受限于模型,图片的背景还是会糊的。
这次我尝试把工作流更新到flux版本,同时对节点进行了优化。各位设计师可以参考一下。
效果
整体效果看,一次出图的分辨率会高点。原则上说,只要显存足够,flux可以直出2K的大图。 出图的背景会更好,不会像SDXL那样模糊。
依然用我的御用酒瓶进行测试:
原图:
换背景后:
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

流程概述
流程跟之前的换背景流程是类似的。就是把生成背景的工作流换成了flux的文生图+canny控制流程。同时新的iclight节点,增加detail transfer节点,可以代替之前的高低频转换流程,还原细节相对好🐂🍺。 下面是一步一步拆解。
提示词反推
这步骤可选,如果不想写提示词,可以使用此节点流程。
使用了当前最好的反推节点joy-caption2,记得选择4bit的模型,这样显存占用不会那么高。
❝
市面上的大部分反推模型都非常费显存,大家要注意了,有条件还是用线上的视觉大模型进行反推。
❞
产品图输入处理
主要是进行裁剪和比例缩放。
Flux文生图+canny
为了节省显存,使用gguf模型。加入了canny控制,这样可以根据产品替换背景。
这里需要注意,controlnet的参数,需要调试,一般强度和结束时间都要调。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

把原图抠图后,叠加在flux生成的图上。
iclight
重打光!把拼合的图都作为laten、前景输入,目的是统一光照。此处的ipa节点是可选的。如果觉得相似度不够,可以打开。
这里要非常注意一个细节迁移节点,是新增的,还原原图的细节,但是不改变光照,很好用。
放大+调色
最后就是通过放大模型,进行放大,和稍微调整颜色和锐度。
写在最后
这个工作流,大家可以参考一下哈。最大的改进就是使用了flux的强大能力。 但是,AI始终还是不能100%稳定输出,在canny强度和效果抽卡上,还是需要多尝试的。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

若有侵权,请联系删除