【AI辅助设计】来了!FLUX产品换背景工作流

ComfyUI换背景工作流,相信大家已经并不陌生了,在xhs、B站上也有不少的教程和方法。在SDXL时代,偶尔也会快速换到满意的背景,但是毕竟受限于模型,图片的背景还是会糊的。

这次我尝试把工作流更新到flux版本,同时对节点进行了优化。各位设计师可以参考一下。

效果

整体效果看,一次出图的分辨率会高点。原则上说,只要显存足够,flux可以直出2K的大图。 出图的背景会更好,不会像SDXL那样模糊。

依然用我的御用酒瓶进行测试:

原图:

换背景后:


感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

![](https://img-blog.csdnimg.cn/img_convert/3ceefd1dea07907adc06c8b1bbfaf596.png)

流程概述

流程跟之前的换背景流程是类似的。就是把生成背景的工作流换成了flux的文生图+canny控制流程。同时新的iclight节点,增加detail transfer节点,可以代替之前的高低频转换流程,还原细节相对好🐂🍺。 下面是一步一步拆解。

提示词反推

这步骤可选,如果不想写提示词,可以使用此节点流程。

使用了当前最好的反推节点joy-caption2,记得选择4bit的模型,这样显存占用不会那么高。

市面上的大部分反推模型都非常费显存,大家要注意了,有条件还是用线上的视觉大模型进行反推。

产品图输入处理

主要是进行裁剪和比例缩放。

Flux文生图+canny

为了节省显存,使用gguf模型。加入了canny控制,这样可以根据产品替换背景。

这里需要注意,controlnet的参数,需要调试,一般强度和结束时间都要调。


感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

拼合图层 ====

把原图抠图后,叠加在flux生成的图上。

iclight

重打光!把拼合的图都作为laten、前景输入,目的是统一光照。此处的ipa节点是可选的。如果觉得相似度不够,可以打开。

这里要非常注意一个细节迁移节点,是新增的,还原原图的细节,但是不改变光照,很好用。

放大+调色

最后就是通过放大模型,进行放大,和稍微调整颜色和锐度。

写在最后

这个工作流,大家可以参考一下哈。最大的改进就是使用了flux的强大能力。 但是,AI始终还是不能100%稳定输出,在canny强度和效果抽卡上,还是需要多尝试的。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

### FLUX 和 SDXL 的一致性工作流实现与调试 在探讨FLUX和SDXL的一致性工作流时,理解两者的技术特点及其差异至关重要。FLUX系列模型以其独特的架构设计,在处理复杂场景方面表现出色[^1]。相比之下,SDXL作为大型扩散模型,擅长于生成高分辨率图像并提供丰富的细节层次[^2]。 #### 工作流概述 对于希望构建一致性的AI绘图流水线而言,通常会涉及以下几个核心组件: - **输入预处理**:统一不同来源的数据格式,确保能够被选定的模型所接受。 - **模型调用接口标准化**:无论是采用FLUX还是SDXL,都需要定义一套通用API来封装具体算法逻辑,从而简化上层应用开发者的操作难度。 - **输出后处理机制**:针对每种模型产生的结果实施必要的优化措施,比如颜色校正、锐化等,使最终呈现的效果更加贴近预期目标。 #### 实现建议 当考虑如何创建一个兼容这两种不同类型模型的工作环境时,可以采取如下策略: ```python import comfyui # 假设这是用于加载本地ComfyUI实例所需的库 def initialize_model(model_name): """初始化指定名称对应的AI绘画模型""" if model_name.lower() == 'flux': return load_flux_model() elif model_name.lower().startswith('sdxl'): return load_sdxl_model() raise ValueError(f"Unsupported model type {model_name}") def process_image(input_data, model_instance): """通过给定的模型实例处理输入数据""" processed_output = model_instance.generate(input_data) return apply_post_processing(processed_output) # 示例函数体省略... ``` 此代码片段展示了如何基于传入参数动态选择合适的模型进行初始化,并提供了简单的图像处理流程框架。实际应用场景下还需要根据具体情况调整和完善这些功能模块。 #### 调试技巧 面对可能出现的问题,有效的调试方法包括但不限于: - 使用日志记录详细的执行路径以及中间状态变化情况; - 对比相同条件下两种模型的表现差异找出潜在瓶颈所在; - 尝试减少批大小或者降低精度设置以加快迭代速度便于快速验证假设;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值