机器学习--欠拟合,过拟合,泛化能力

本文深入探讨了机器学习中的欠拟合与过拟合现象,解释了两者如何影响模型的训练效果及泛化能力。欠拟合通常发生在模型过于简单,无法捕捉数据中的复杂模式;而过拟合则表现为模型过于复杂,对训练数据过度拟合,导致对未知数据预测能力下降。文章还讨论了泛化误差的概念,它是衡量模型对未来数据预测能力的重要指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欠拟合

在机器学习过程中,特别是线性回归,那么会对数据进行拟合
如果一条曲线经过的数据点很少且很多数据相当于没有用上
欠拟合
## 过拟合
过拟合是曲线对每一点的都会拟合
这样会导致模型具有很差的泛化能力
且测试集的数据进行测试有很大误差
过拟合
泛化能力:
其实很简单 就是对未来数据的预测能力的表现
泛化误差:
对未来样本预测与实际的误差
wiki解释:一个机器学习模型的泛化误差(Generalization error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。使用这个名字是因为这个函数表明一个机器的推理能力,即从样品数据中推导出的规则能够适用于新的数据的能力
泛华误差公式:
这个公式有没有很眼熟,没错居然是损失函数的期望就是泛华误差 泛华误差公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值