拉格朗日松弛技术是一个非常简单而漂亮地转化方法。
首先,拉格朗日松弛技术是用在优化问题里面(假设是最小化问题),而且一定是有约束条件的优化问题。
在计算问题展现给我们的各种方式中,优化问题(一部分是目标,一部分是规则)仍可 以说是最常见的。而离散优化问题,我们的选择是二选一,没有中间地带,这是最典型的选择。
有很多方法可以对一个问题进行松弛,我们已经看到了三个最重要的问题。首先,约束 松弛,简单地消除一些约束,在回到现实之前,先在更宽松的问题上取得进展。第二,持续 松弛,将离散的或二进制的选择变成连续体:
也就是说面对问题或困境时不要一开始就对自己有太高的要求(约束条件过多),先做吧,得到一个还算ok的结论的时候再加约束条件,然后再进行改进优化,最后得到最终结果。
随机性。对于某些复杂的问题,随机性能提供一些解决方案,不过可能需要在准确度上做出一些妥协。什么更能反映真实的情况呢。在脱贫的案例中,是官方公布的统计学数字,还是政府单方面精心挑选的案例,都不是。相比之下,在所有贫困户中随机挑选一家,采访真实情况,更能反映整体情况。接受随机性的信息推荐,有助于打破固有的知识框架,增加选择的多样性。接受这些随机性的建议,会尝试到一些原来不会主动选择的选项。比如书籍,酒,蔬菜的选择等。