马尔可夫链:
参考链接:
https://blog.csdn.net/weixin_42509541/article/details/123332839
我对它的理解就是:
针对的数据是一组离散随机变量的集合。
下一次(t+1) 的输出仅取决于当前(t)的输入。
它的计算就一直依靠前一次的结果进行计算,都是概率模型。
上面链接中的例子写的很好。
隐马尔可夫模型:
我是通过《统计学习》(李航)的书进行的学习,写的也是很好。
这里对隐马尔可夫模型进行了介绍。
这里需要搞清楚状态转移概率矩阵,观测概率矩阵,初始概率向量等概念。
下面这个例子很好的解释了此模型。
接下来是概率计算算法,分为前向计算和后向计算。
只要认真看完上面的图片以及链接,我相信肯定会对马尔可夫链(Markov Chain)以及隐马尔可夫模型有了基础的了解,想要了解更深的话,就需要查看其他资料了。
理解:
对这些模型,如果看了不使用或者不经常温习的话很容易忘记,我建议就是没事可以简略的看一遍,温故而知新嘛,并且偶尔的复习会带来很好的效果。慢慢积累这些知识吧。
路漫漫其修远兮,吾将上下而求索!!!