马尔可夫链(Markov Chain),隐马尔可夫模型

本文介绍了马尔可夫链(Markov Chain)和隐马尔可夫模型(HMM)的基本概念。马尔可夫链是基于当前状态预测未来状态的概率模型,而隐马尔可夫模型则涉及状态转移和观测概率矩阵,以及初始概率向量。通过实例和概率计算算法(前向和后向计算)来帮助理解这两个模型。建议定期回顾以巩固知识。
摘要由CSDN通过智能技术生成

马尔可夫链:
参考链接:
https://blog.csdn.net/weixin_42509541/article/details/123332839

我对它的理解就是:
针对的数据是一组离散随机变量的集合。
下一次(t+1) 的输出仅取决于当前(t)的输入。
它的计算就一直依靠前一次的结果进行计算,都是概率模型。
上面链接中的例子写的很好。

隐马尔可夫模型:
我是通过《统计学习》(李航)的书进行的学习,写的也是很好。
这里对隐马尔可夫模型进行了介绍。
在这里插入图片描述
这里需要搞清楚状态转移概率矩阵观测概率矩阵初始概率向量等概念。
在这里插入图片描述
下面这个例子很好的解释了此模型。
在这里插入图片描述
在这里插入图片描述
接下来是概率计算算法,分为前向计算和后向计算。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
只要认真看完上面的图片以及链接,我相信肯定会对马尔可夫链(Markov Chain)以及隐马尔可夫模型有了基础的了解,想要了解更深的话,就需要查看其他资料了。
理解:
对这些模型,如果看了不使用或者不经常温习的话很容易忘记,我建议就是没事可以简略的看一遍,温故而知新嘛,并且偶尔的复习会带来很好的效果。慢慢积累这些知识吧。

路漫漫其修远兮,吾将上下而求索!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值