Windows Anaconda Pytorch pkgs 相关问题总结
Anaconda 通过清华源安装Pytorch
-
在Pytorch网站(https://pytorch.org/)查询需要安装的版本对应的命令,如下:

-
打开Anaconda->新建的环境->右键terminal
-
分别输入:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ -
输入刚才在官网查到的命令行,去掉-c pytorch
-
弹出提示时,输入 y,即可完成安装,安装完成后显示“done”
-
测试是否安装成功:
(1)输入:activate 你的环境名 (不报错)
(2)输入:conda.bat activate 你的环境名 (不报错)
(3)输入:python (显示版本号,如Python 3.7.7)
(4)输入:import torch(不报错)
(5)输入:torch.cuda.is_available(显示<function is_available … …>)完成以上(1)至(5),说明安装成功。
附:创建相关虚拟环境的spyder
打开Anaconda Navigator,切换环境至pytorch,安装Spyder和Jupyter。
运行Spyder后, 如果出现“ ModuleNotFoundError: No module named ‘toml’ ”这个错误:
打开prompt,激活环境:activate pytorch,再输入:pip install toml twisted pymodbus即可
参考:
Anaconda利用清华镜像安装Pytorch(Windows)
Pytorch&CUDA问题
1.Pytorch是什么(简)
PyTorch 与深度学习领域中主流的框架 TensorFlow、Keras、Caffe、MXNet 一样,都是在该领域内广为使用的框架中的一种,已替代早先人们需要具备 C++ 和 CUDA 等方面的专业知识来实现深度学习算法。它与其他大多数深度学习框架差不多,主要用于两个方面:用 GPU 加速过的运算替代与 Nunpy 类似的运算;包含自动求导系统的的深度神经网络。[1]
2.CUDA是什么(简)
显卡:(GPU)主流是Nvidia的GPU,深度学习本身需要大量计算。GPU的并行计算能力,在过去几年里恰当地满足了深度学习的需求。AMD的GPU基本没有什么支持,可以不用考虑。
驱动:没有显卡驱动,就不能识别GPU硬件,不

本文详细介绍了在Windows上使用Anaconda通过清华源安装PyTorch的步骤,包括添加渠道、安装命令及验证安装成功。同时,讨论了PyTorch与CUDA的匹配问题,提供了解决torch.cuda.is_available()返回False的两种方法,并概述了如何安装OpenCV、tensorboardX等其他包。此外,还提到了中科大镜像源加速安装包的方式。
最低0.47元/天 解锁文章
1288

被折叠的 条评论
为什么被折叠?



