主要记载关于全局平均池化层(Global Average Pooling, GAP)中如下两点的理解:
1. GAP的原理
2. 相对于全连接层,GAP具有更少的参数
为了直观地说明全局平均池化层相对于全连接层具有更少的参数,我们可以构造一个简单的例子。假设有一个卷积神经网络(CNN)的输出层前是一个特征图(Feature Map),其维度为 C×H×W,其中:
- C 是通道数(Channel Number),代表特征图的深度。
- H 和 W 分别是特征图的高度和宽度。
现在我们要将这个特征图映射到一个分类任务的输出向量,该向量的长度为N(代表类别数)。
1. **使用全连接层(FC)**:
全连接层会对输入的每个样本(即特征图)的所有元素进行线性变换,生成输出向量。若特征图大小为C×H×W ,则输入的总元素数为C×H×W 。全连接层与输入的每个元素都对应一个权重,再加上一个偏置项,因此该全连接层所需的参数总数为:
其中,前一部分是权重参数,后一部分是偏置参数。
2. **使用全局平均池化层(GAP)**:
全局平均池化层对每个通道(