10年265倍!动态展示全球第一股英伟达10年股价走势

英伟达在过去十年的股价走势展示了其在市场上的强劲表现和显著增长。自1999年上市以来,英伟达的股价经历了多次显著的涨幅,并在2024年达到了历史新高。

从2023年6月的数据来看,英伟达的股价为386.54美元/股,市值为9548亿美元。然而,到了2024年6月,英伟达的股价已经大幅上涨, 市值达到了3.34万亿美元,成为全球第一。

这10年,英伟达是如何一步步登顶全球第一宝座的,可以通过动画视频更加直观的来展示。

在deepseek中输入提示词:

你是一个Python编程专家,要完成一个编写Python脚本的任务,具体步骤如下:

用akshare库获取英伟达(股票代码:105.NVDA) 在2014年6月19日到2024年6月19日期间的股票的收盘价数据(用后复权的收盘价);

基于后复权的收盘价数据,做一个动态股价曲线图,逐日显示英伟达股价的动态变化情况, 以mp4视频文件输出,保存到文件夹:F:\aivideo;

注意:

每一步都要输出信息到屏幕上

日期格式是YYYYMMDD

设置matplotlib默认字体为'SimHei',文件路径为:C:\Windows\Fonts\simhei.ttf

mp4视频的分辨率1080p,码率10Mbps以内,视频时长控制在5分钟以内,格式为MP4格式;

stock_data['日期'] 列的数据类型是字符串,而不是日期时间类型。我们需要先将这一列转换为日期时间类型,然后再进行操作

历史行情数据-东财

接口: stock_us_hist

目标地址: https://quote.eastmoney.com/us/ENTX.html#fullScreenChart

描述: 东方财富网-行情-美股-每日行情

限量: 单次返回指定上市公司的指定 adjust 后的所有历史行情数据

输入参数

名称类型描述

symbolstr美股代码, 可以通过 ak.stock_us_spot_em() 函数返回所有的 pandas.DataFrame 里面的 代码 字段获取

periodstrperiod='daily'; choice of {'daily', 'weekly', 'monthly'}

start_datestrstart_date="20210101"

end_datestrend_date="20210601"

adjuststr默认 adjust="", 则返回未复权的数据; adjust="qfq" 则返回前复权的数据, adjust="hfq" 则返回后复权的数据

输出参数

名称类型描述

日期object-

开盘float64注意单位: 美元

收盘float64注意单位: 美元

最高float64注意单位: 美元

最低float64注意单位: 美元

成交量int32注意单位: 股

成交额float64注意单位: 美元

振幅float64注意单位: %

涨跌幅float64注意单位: %

涨跌额float64注意单位: 美元

换手率float64注意单位: %

接口示例

import akshare as ak

stock_us_hist_df = ak.stock_us_hist(symbol='106.TTE', period="daily", start_date="20200101", end_date="20240214", adjust="qfq")

print(stock_us_hist_df)

源代码:

import akshare as ak

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import os

import pandas as pd

# 设置matplotlib默认字体为'SimHei'

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

# 获取英伟达的股票数据

print("正在获取英伟达的股票数据...")

stock_data = ak.stock_us_hist(symbol='105.NVDA', period="daily", start_date="20140619", end_date="20240619", adjust="hfq")

print("数据获取成功!")

# 检查数据

print("数据预览:")

print(stock_data.head())

# 将日期列转换为日期时间类型

stock_data['日期'] = pd.to_datetime(stock_data['日期'])

# 设置视频输出文件夹

output_folder = r"F:\aivideo"

if not os.path.exists(output_folder):

os.makedirs(output_folder)

output_file = os.path.join(output_folder, "nvidia_stock_price.mp4")

# 创建绘图

fig, ax = plt.subplots(figsize=(10, 6))

# 初始化绘图

def init():

ax.clear()

ax.set_title('英伟达股价走势')

ax.set_xlabel('日期')

ax.set_ylabel('收盘价 (美元)')

# 更新绘图

def update(frame):

ax.clear()

ax.set_title('英伟达股价走势')

ax.set_xlabel('日期')

ax.set_ylabel('收盘价 (美元)')

ax.plot(stock_data['日期'][:frame], stock_data['收盘'][:frame], label='收盘价')

ax.legend()

if frame > 0:

ax.set_xlim(stock_data['日期'].iloc[0], stock_data['日期'].iloc[frame] + pd.Timedelta(days=1))

else:

ax.set_xlim(stock_data['日期'].iloc[0], stock_data['日期'].iloc[0] + pd.Timedelta(days=1))

ax.set_ylim(stock_data['收盘'].min(), stock_data['收盘'].max())

# 创建动画

ani = animation.FuncAnimation(fig, update, frames=len(stock_data), init_func=init, interval=200, repeat=False)

# 保存动画为视频文件

print("正在生成视频文件...")

writer = animation.FFMpegWriter(fps=30, bitrate=10000, extra_args=['-vcodec', 'libx264', '-pix_fmt', 'yuv420p', '-s', '1920x1080'])

ani.save(output_file, writer=writer)

print(f"视频文件已保存到: {output_file}")

plt.show()

可以看到10年的前几年,英伟达股票虽然上涨,但是涨幅很小,2017年完成了10倍之旅,最近5年则持续大幅上涨,相对于2014年股票上涨200多倍,实现惊人的市值增长。不过,虽然拉长时间看,是一直上涨,但是中间的波动也非常大,回调期间跌幅也很惊人,很少有人能10年一直拿着不动。

### NVIDIA 股票信息概述 NVIDIA 是一家全球领先的图形处理器 (GPU) 设计公司,其产品广泛应用于游戏、数据中心、人工智能以及汽车领域。由于 GPU 在高性能计算中的重要地位,尤其是在深度学习和机器学习方面的应用,使得 NVIDIA 成为了科技行业中备受关注的企业之一[^2]。 #### 关于 NVIDIA 驱动与硬件性能的关系 尽管用户提到卸载了 NVIDIA 驱动并尝试切换到 nouveau 开源驱动程序,但需要注意的是,nouveau 和 nvidia 驱动分别依赖不同的配置文件进行设置,并不完全遵循 `/etc/X11/xorg.conf` 文件的内容[^1]。这表明,在实际部署过程中,如果需要优化系统性能或解决兼容性问题,建议优先使用官方支持的闭源驱动而非开源替代方案。 #### NVIDIA 在金融市场的影响 DeepSeek-R1 这样的大模型被引入金融行业后,极大地提升了分析师的工作效率及预测精度。借助 NVIDIA 提供的强大算力资源,金融机构能够快速处理海量数据集并生成有价值的洞察报告[^3]。这种技术进步不仅限于传统银行业务改进,还包括风险评估模型构建等多个方面。 #### 技术架构设计启示录 当考虑如何有效管理多线程对话流程或者实现复杂任务自动化时,“代理间交互逻辑”的概念显得尤为重要。正如某些高级 AI 应用所展现出来的那样——通过合理安排各个子模块之间通信机制从而达到最佳整体表现效果[^4]。同样道理也可以延伸至企业运营层面:科学制定战略目标并将之细化成具体行动指南将会极大促进业务发展速度。 ```python import yfinance as yf # 获取 NVIDIA 的历史股价数据 tickerSymbol = 'NVDA' nvda_data = yf.Ticker(tickerSymbol) # 打印最近一天收盘价 latest_close_price = nvda_data.history(period="1d")['Close'][0] print(f"NVIDIA latest closing price: {latest_close_price}") ``` 上述 Python 代码片段展示了如何利用 `yfinance` 库轻松获取 NVIDIA (股票代号 NVDA)最新的市场交易价格情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值