奇异矩阵与非奇异矩阵的定义与区别

讨论非奇异矩阵与奇异矩阵的前提该矩阵A为方阵,即n=m,行列数相等
非方阵矩阵谈不上奇异与非奇异。

奇异矩阵判别方法:

  1. 判断矩阵A行列式是否为0,若行列式|A|=0,则矩阵A为奇异矩阵。
  2. 一个矩阵A(方阵)半正定,且它的每个特征值大于或等于0,则A为奇异矩阵。
  3. 一个矩阵A(方阵)正定,且它的每个特征值都大于0,为奇异矩阵。
  4. 一个方阵非奇异当且仅当它代表的线性变换是个自同构,为奇异矩阵。

非奇异矩阵判别方法

  1. 判断,若矩阵A(方阵)行列式|A|≠0,则矩阵A为非奇异矩阵
  2. 若矩阵A(方阵)的秩R(A)=n,即不存在非零行,称矩阵A为非奇异矩阵
  3. 可逆矩阵就是非奇异矩阵,非奇异矩阵是可逆矩阵,二者等价。
  4. 一个矩阵A(方阵)正定,并且每个特征值都大于零,则该矩阵A为非奇异矩阵。
  5. 一个矩阵A(方阵)代表的线性变换是个自同构,则该矩阵A为非奇异矩阵。
  6. 一个非奇异矩阵可表示成若干个初等矩阵之积。
  7. AX=b有唯一解。
  8. AX=0有且仅有零解。
### 奇异矩阵非奇异矩阵的概念及区别 #### 定义区分 非奇异矩阵指的是存在另一个矩阵其相乘能得到单位矩阵的方阵;换句话说,对于一个\( n \times n \) 的矩阵 \( A \),如果能找到一个同样大小的矩阵 \( B \),使得 \( AB = BA = I \),其中 \( I \) 是单位矩阵,则称 \( A \) \( B \) 都是非奇异矩阵[^1]。 此相对的是奇异矩阵,这类矩阵不存在这样的逆矩阵。这意味着当尝试求解线性方程组时,由奇异矩阵表示的系数矩阵无法给出唯一解,因为其行列式值为零,从而违反了克拉默法则的前提条件之一——即行列式的不为零特性[^2]。 #### 性质对比 - **行列式** 对于非奇异矩阵而言,其行列式的值必定不等于0。相反地,任何具有零作为行列式的结果都意味着该矩阵奇异的。这是因为只有当矩阵可以被转换成单位矩阵形式的时候才可能拥有非零的行列式值,而这正是非奇异矩阵的特点之一[^3]。 - **秩(Rank)** 如果一个矩阵非奇异的话,它的秩将会等于自身的维度数量(满秩)。然而,一旦遇到奇异情况,尽管仍有可能保持较高的秩,但绝不会达到最大可能的程度,也就是说至少会丢失一维的信息量。 - **特征向量特征值** 当讨论到特征分解时,非奇异矩阵能够提供一组完整的、相互正交的基础向量集以及相应的非零特征值集合。相比之下,奇异矩阵可能会表现出重复根现象或是某些方向上的退化行为,这表明它们缺乏足够的独立性来形成完备的空间基底。 ```python import numpy as np # 创建两个不同的矩阵用于展示差异 non_singular_matrix = np.array([[4, 7], [2, 6]]) singular_matrix = np.array([[1, 2], [2, 4]]) print("Non-Singular Matrix Determinant:", np.linalg.det(non_singular_matrix)) print("Singular Matrix Determinant:" , np.linalg.det(singular_matrix)) try: inv_non_singular = np.linalg.inv(non_singular_matrix) except Exception as e: print(f"Error while trying to invert non-singular matrix: {e}") try: inv_singular = np.linalg.inv(singular_matrix) except Exception as e: print(f"Error while trying to invert singular matrix: {e}") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵汪wow

您的支持是我更新创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值