实时追踪科研动态丨李飞飞,Philip S. Yu、蔡达成等人8.10精选新论文,附ChatPaper综述

作为科研人员,每天需要检索和浏览大量的学术文献,以获取最新的科技进展和研究成果。然而,传统的检索和阅读方式已经无法满足科研人的需求。

ChatPaper,一款集检索、阅读、知识问答于一体的文献知识工具。帮助你快提高检索、阅读论文效率,获取最新领域研究动态,让科研工作更加游刃有余。

在这里插入图片描述

结合前沿动态订阅功能,精选arXiv当日热门新论文,形成论文综述,让大家更加快速了解前沿动态。

如果想要对某篇论文进行深入对话,可以直接复制论文链接到浏览器上或者直达ChatPaper页面:https://www.aminer.cn/chat/g/explain

1.Accelerating LLM Inference with Staged Speculative Decoding 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f06890916/

ChatPaper综述:论文主要解决了在小批量、设备上进行大语言模型(LLM)推理时的计算效率低的问题。通过引入一种新的算法,即分阶段的可猜解解码(staged speculative decoding),作者改进了以往关于可猜解解码的工作。首先,将可猜解的批次重新构建为一棵树,从而降低生成成本并增加每批次的预期令牌数量。其次,增加了第二阶段的可猜解解码。综合起来,作者在拥有762M参数的GPT-2-L模型上,将单批次解码延迟降低了3.16倍,同时完全保持输出质量。

2.Shepherd: A Critic for Language Model Generation 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f068908f5/

ChatPaper综述:论文描述了一个名为Shepherd的语言模型,用于对生成的文本进行批判性评估并提出改进建议。作者指出,随着大型语言模型的改进,越来越多的人对利用这些模型的能力来优化其输出结果产生了兴趣。为了达到这个目的,作者开发了Shepherd,这个模型经过特定的调整,能够识别出多样化的错误,并提供纠正建议,超越了未经调整的模型的能力。作者通过社区反馈和人工注释创建了一个高质量的反馈数据集,作为Shepherd模型的核心。尽管Shepherd模型只有7B个参数,但它的批评结果要么与已建立的模型(包括ChatGPT)相当,要么更受青睐。在使用GPT-4进行评估时,Shepherd模型相对其他竞争对手具有53-87%的平均胜率。在人类评估中,Shepherd模型明显优于其他模型,并且平均与ChatGPT模型相差无几。

3.LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking 阅读原文

https://www.aminer.cn/pub/64d465973fda6d7f0689142e/

ChatPaper综述:虽然已经开发出了一些公开可用的框架,但它们对于不同用户来说,针对特定任务和数据集的自定义能力通常很复杂。为了解决这个问题,作者引入了LLMeBench框架,它可以无缝地为任何自然语言处理任务和模型进行定制,无论是哪种语言。该框架还提供了零样本学习和少样本学习的设置。用户可以在不到10分钟的时间内添加新的自定义数据集,并可以使用自己的模型API密钥来评估所需的任务。该框架已经在31个独特的NLP任务上进行了测试,涉及53个公开可用的数据集和大约296K的数据点。作者计划将该框架开源给社区,并提供在线视频演示。

4.JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f0689098b/

ChatPaper综述:在音乐生成中,根据文本描述生成音乐(即文本到音乐的转换)仍然存在一些挑战,如音乐结构的复杂性和高采样率要求等。现有的生成模型在音乐质量、计算效率和泛化能力方面存在一些限制。该论文引入了JEN-1,一个用于文本到音乐生成的通用高保真度模型。JEN-1是一个同时结合了自回归和非自回归训练的扩散模型。通过上下文学习,JEN-1可以执行各种生成任务,包括文本引导的音乐生成、音乐修复和续写。评估结果显示,JEN-1在文本与音乐的对齐和音乐质量方面表现出优越性,同时保持了计算效率。论文还提供了JEN-1的演示链接。

5.Benchmarking LLM powered Chatbots: Methods and Metrics 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f06890917/

ChatPaper综述:论文说明了评估使用大型语言模型(LLMs)等生成式AI工具驱动的聊天机器人性能的重要性,并提出了一种称为E2E(端到端)基准的新型基准方法。论文通过使用E2E基准和其他常用指标对一个例子聊天机器人进行评估,并观察到E2E基准相比其他指标表现更好。此外,与其他指标相比,使用余弦相似度作为E2E基准指标在评估聊天机器人时表现良好。研究结果表明,在E2E基准中使用余弦相似度作为指标具有多个优点。

6.Deep Learning for Diverse Data Types Steganalysis: A Review 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f068908ab/

ChatPaper综述:这篇综述性论文主要讨论了利用深度学习技术进行隐写分析的方法和研究进展。隐写术和隐写分析是信息安全领域中相关的两个方面。隐写术旨在隐藏通信内容,而隐写分析则旨在发现隐藏信息甚至可能恢复其中的数据。隐写术和隐写分析引起了广泛关注,特别是来自执法部门的关注。隐写术经常被网络犯罪分子甚至恐怖分子使用,以避免在拥有证据时被抓获,即使数据已经加密,因为密码术在许多国家被禁止或受限制。因此,了解最先进的揭示隐藏信息的技术对于揭露非法行为至关重要。近年来,文献中引入了许多强大可靠的隐写术和隐写分析技术。本综述论文全面介绍了基于深度学习的隐写分析技术,用于检测数字媒体中的隐藏信息。该论文涵盖了隐写分析中的各种封面类型,包括图像、音频和视频,并讨论了最常用的深度学习技术。此外,该论文还探讨了更先进的深度学习技术,如深度转移学习(DTL)和深度强化学习(DRL),以提高隐写分析系统的性能。该论文系统综述了该领域的最新研究,包括最近研究中使用的数据集和评估指标。论文还对基于DTL的隐写分析方法及其在不同数据集上的性能进行了详细分析。综述以对基于深度学习的隐写分析现状、挑战和未来研究方向的讨论结束。

7.Slot Induction via Pre-trained Language Model Probing and Multi-level Contrastive Learning 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f06890979/

ChatPaper综述:研究说明了在面向任务的对话系统(如意图检测和槽填充)中,近期自然语言理解方面的先进方法需要大量注释数据才能达到竞争性的性能。然而,在现实中,令牌级别的注释(槽标签)耗时且难以获取。因此,作者提出了一种解决方案来解决槽归纳(SI)任务,即在没有明确的令牌级别槽注释的情况下诱导槽边界。作者建议利用无监督的预训练语言模型(PLM)探测和对比学习机制来利用从PLM中提取的无监督语义知识,并利用从TOD中获得的额外的句子级意图标签信号。这种方法在SI任务中表现出很好的效果,并能够弥合与令牌级别监督模型在两个NLU基准数据集上的差距。当推广到新兴意图时,我们的SI目标还提供了增强的槽标签表示,从而在槽填充任务中提高了性能。

8.Revisiting Disentanglement and Fusion on Modality and Context in Conversational Multimodal Emotion Recognition 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f06890896/

ChatPaper综述:研究指出在对话情景下,多模态情绪分析存在的问题是多模态特征的分离和融合应同时考虑到特征的多模态性和对话上下文情况。现有的方法大多将多模态情绪分析视为标准的多模态分类问题,通过对多模态特征进行分离和融合来提高任务性能。然而,重新审视多模态情绪分析的特点后,研究人员认为在特征的分离和融合过程中应同时合理地对特征的多模态性和对话上下文进行建模。因此,本研究旨在通过充分考虑上述见解来进一步提高任务性能。一方面,在特征分离阶段,基于对比学习技术,研究人员设计了一种双层分离机制(DDM),将特征分解为模态空间和话语空间。另一方面,在特征融合阶段,研究人员分别提出了一种参与感知融合机制(CFM)和上下文重新融合机制(CRM),用于多模态和上下文的整合。它们共同调度了多模态和上下文特征的适当融合。具体而言,CFM动态地管理多模态特征的贡献,而CRM灵活地协调对话上下文的引入。在两个公开的多模态情绪分析数据集上,本系统始终实现了最新的任务性能。进一步分析表明,我们提出的机制通过自适应地充分利用多模态和上下文特征,极大地促进了多模态情绪分析任务的完成。需要注意的是,我们提出的方法有很大的潜力来促进更广泛的其他对话多模态任务的开展。

9.LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation 阅读原文

https://www.aminer.cn/pub/64d465973fda6d7f068914ce/

ChatPaper综述:说明了当前的文本到图像生成模型在复杂自然场景中仍然存在错误对齐问题,这包括空间关系理解和数字处理错误。虽然最近已经提出了通过精细的引导信息来提高可控性的方法,但由于用户需要手动提供这些引导信息,因此这个问题并没有得到根本解决。因此,本文旨在在不需要任何引导的情况下,综合出和给定文本提示语义对齐的高保真图像。为实现这一目标,本文提出了一个粗到细的范式,用于布局规划和图像生成。具体而言,首先通过基于大型语言模型的上下文学习,在给定的文本提示的条件下生成粗粒度的布局。然后,本文提出了一种细粒度的物体交互扩散方法,以在给定的提示和自动生成的布局的条件下合成高保真度的图像。广泛的实验证明,我们提出的方法在布局和图像生成方面优于现有的最先进模型。

10.Rendering Humans from Object-Occluded Monocular Videos 阅读原文

https://www.aminer.cn/pub/64d4658d3fda6d7f06890915/

ChatPaper综述:说明了在单目视频中渲染移动人体的困难之处,主要是由于障碍物导致视频中存在部分遮挡。现有的方法无法处理这种缺陷,原因有两个:第一,标准的渲染策略依赖于点对点映射,这可能导致可见区域和被遮挡区域之间存在显著差异;第二,直接回归方法没有考虑在遮挡情况下进行渲染的可行性标准(即先验信息)。为了解决上述问题,该文提出了OccNeRF,一种神经渲染方法,可以在严重遮挡的场景中更好地渲染人体。作为解决这两个问题的直接方法,我们提出了基于表面的渲染方法,通过集成几何和可见性先验信息。我们在模拟和真实遮挡场景中验证了我们的方法,并证明了其优越性。


如何使用ChatPaper?

使用ChatPaper的方法很简单,打开AMiner首页,从页面顶部导航栏或者右下角便可进入ChatPaper页面。

在这里插入图片描述

在ChatPaper页面中,可以选择基于单篇文献进行对话和基于全库(个人文献库)对话,可选择上传本地PDF或者直接在AMiner上检索文献。

ChatPaper使用教程:点此查看

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值