前言
机器学习方法主要可以分为四类,监督学习、半监督学习、无监督学习、以及强化学习。其中,强化学习不同于连接主义的监督学习方法,是智能体通过与环境的交互,观测交互结果以及获得相应的回报。这种学习的方式是模拟人或动物的一种学习方式,因此强化学习在机器人领域有着广泛的应用。
传统的强化学习的动作空间和样本空间都很小,且一般是离散的情境下,而实际的任务往往有着很大的状态空间和连续的动作空间。当输入数据为图像,声音时,往往具有很高维度,传统的强化学习很难处理,此时就需要结合深度学习的方法,将高纬度数据进行降维处理,即深度强化学习方法。
讲解主题
主题:深度强化学习在机器人领域的研究与应用
提纲:1、深度强化学习简介
2、(深度)强化学习在机器人领域的研究