深度强化学习在机器人领域的研究与应用

本文探讨了深度强化学习在机器人和自动驾驶领域的应用。从深度强化学习的基本概念,如AlphaGo的成功案例,到其在机器人抓取、行走、飞行、导航等任务中的实践,以及在自动驾驶中的解决方案,尤其是解决长尾问题。深度学习帮助强化学习处理高维度输入,推动了这两个领域的技术创新。
摘要由CSDN通过智能技术生成

前言

       机器学习方法主要可以分为四类,监督学习、半监督学习、无监督学习、以及强化学习。其中,强化学习不同于连接主义的监督学习方法,是智能体通过与环境的交互,观测交互结果以及获得相应的回报。这种学习的方式是模拟人或动物的一种学习方式,因此强化学习在机器人领域有着广泛的应用。

       传统的强化学习的动作空间和样本空间都很小,且一般是离散的情境下,而实际的任务往往有着很大的状态空间和连续的动作空间。当输入数据为图像,声音时,往往具有很高维度,传统的强化学习很难处理,此时就需要结合深度学习的方法,将高纬度数据进行降维处理,即深度强化学习方法。

讲解主题

主题:深度强化学习在机器人领域的研究与应用

提纲:1、深度强化学习简介

           2、(深度)强化学习在机器人领域的研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值