2024深度学习发论文&模型涨点之——无监督SAM
无监督SAM(UnSAM)是一种在计算机视觉领域,尤其是图像分割领域取得重大进步的技术。UnSAM的核心在于它能够无需人工标注数据,即时启动并自动进行整体图像分割。这一技术采用了分而治之的策略,通过自顶向下的聚类方法将未标注的图像分割成实例级和语义级的segments,然后利用自底向上的聚类方法迭代合并像素,形成更大的组,建立层次结构。这些无监督的多粒度masks随后可用于监督模型训练。
无监督SAM技术通过自动分割图像成实例级和语义级的segments,广泛应用于自动驾驶、医学成像、环境监控、数字病理学图像分析、民用基础设施缺陷评估、视频目标跟踪和异常检测等多个领域,无需人工标注数据即可实现高效准确的图像分析和理解。
如果有同学想发表相关论文,小编整理了一些无监督SAM【论文】合集,以下放出部分,全部论文PDF版,需要的同学公重号【AI科研灵感】回复“无监督SAM”即可全部领取
论文精选
论文1:
Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM
鲁棒的零样本人群计数与定位:自适应分辨率SAM
方法
-
Segment-Everything-Everywhere Model (SEEM):利用SEEM生成用于训练人群计数模型的伪标签,SEEM是Segmentation Anything Model (SAM)的变体。
-
自适应分辨率SEEM (AdaSEEM):提出AdaSEEM以处理人群场景中的尺度变化、遮挡和重叠问题,通过在高密度区域放大来提高识别率。
-
高斯混合模型 (GMM) 定位方法:基于GMM预测人群中头部位置,用于生成头部位置的伪标签。
-
鲁棒损失函数:设计了一种鲁棒损失函数,排除SEEM预测中的不确定区域,以增强计数网络的训练过