“无监督学习+SAM”完美结合,成就顶会论文新宠!

2024深度学习发论文&模型涨点之——无监督SAM

无监督SAM(UnSAM)是一种在计算机视觉领域,尤其是图像分割领域取得重大进步的技术。UnSAM的核心在于它能够无需人工标注数据,即时启动并自动进行整体图像分割。这一技术采用了分而治之的策略,通过自顶向下的聚类方法将未标注的图像分割成实例级和语义级的segments,然后利用自底向上的聚类方法迭代合并像素,形成更大的组,建立层次结构。这些无监督的多粒度masks随后可用于监督模型训练。

无监督SAM技术通过自动分割图像成实例级和语义级的segments,广泛应用于自动驾驶、医学成像、环境监控、数字病理学图像分析、民用基础设施缺陷评估、视频目标跟踪和异常检测等多个领域,无需人工标注数据即可实现高效准确的图像分析和理解。

如果有同学想发表相关论文,小编整理了一些无监督SAM【论文】合集,以下放出部分,全部论文PDF版,需要的同学公重号【AI科研灵感】回复“无监督SAM”即可全部领取

论文精选

论文1:

Robust Zero-Shot Crowd Counting and Localization With Adaptive Resolution SAM

鲁棒的零样本人群计数与定位:自适应分辨率SAM

方法

  • Segment-Everything-Everywhere Model (SEEM):利用SEEM生成用于训练人群计数模型的伪标签,SEEM是Segmentation Anything Model (SAM)的变体。

  • 自适应分辨率SEEM (AdaSEEM):提出AdaSEEM以处理人群场景中的尺度变化、遮挡和重叠问题,通过在高密度区域放大来提高识别率。

  • 高斯混合模型 (GMM) 定位方法:基于GMM预测人群中头部位置,用于生成头部位置的伪标签。

  • 鲁棒损失函数:设计了一种鲁棒损失函数,排除SEEM预测中的不确定区域,以增强计数网络的训练过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值