SAM+无监督学习!能发顶会的高端局组合!idea效果绝佳

学过SAM的朋友都知道,SAM需要对训练数据进行全面的手动标记,每张图像都要超过20分钟...效率有待提升。那么如何解决这个短板?我们考虑SAM+无监督学习。

这是因为无监督学习具有无需人工标注数据的特点,通过将两者结合,我们就可以在资源有限或标注成本较高的情况下,更有效地处理数据,同时不损失性能。

因此在很多领域,特别是医学图像分割等,这种高效、灵活又强大的数据处理和模式识别方法是我们的首选,自然也成了研究热点,相关成果效果绝佳,比如开创数据零标注时代先河的UnSAM,以及CVPR 2024的UnSAMFlow。

除此以外,还有一些很值得学习的无监督学习+SAM新方法,我从中挑选了9篇,简单提炼了可参考的创新点,希望可以给同学们提供论文灵感。

论文原文+开源代码需要的同学看文末

Segment Anything without Supervision

方法:本文介绍了一种名为UnSAM的无监督学习方法,能够在没有监督的情况下进行交互和整图分割。UnSAM采用了一种分而治之的策略来“发现”视觉场景的层次结构,利用自上而下的聚类方法将未标记的图像分割成实例/语义级别的区域,然后使用自下而上的聚类方法迭代地将像素合并成更大的组,形成层次结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值