3分钟读懂数据分析的流程是什么

数据分析是基于商业目的,有目的地进行收集、整理、加工和分析数据,提炼出有价值的 信息的一个过程。整个过程大致可分为五个阶段,具体如下图所示。

图片

1.明确目的和思路

在开展数据分析之前,我们必须要搞清楚几个问题,比如数据对象是谁?要解决什么业务问题?并基于对项目的理解,整理出分析的框架和思路。例如,减少新客户的流失、优化活动效果、提高客户响应率等。不同的项目对数据的要求是不一样的,使用的分析手段也是不一样的。

2.数据收集

数据收集是按照确定的数据分析思路和框架内容,有目的地收集、整合相关数据的一个过程、它是数据分析的基础。

3.数据处理

数据处理是指对收集到的数据进行清洗、加工、整理等一些操作,以便开展数据分析,它 是数据分析前必不可少的阶段。这个阶段是数据分析整个过程中最耗时的,也在一定程度上保 证了数据的质量。

4.数据分析

数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规划,为商业决策提供参考。

到了这个阶段,要想驾驭数据开展数据分析,就要涉及工具和方法的使用,其一是要熟悉 常规数据分析方法及原理,其二是要熟悉专业数据分析工具的使用,比如pandas、MATLAB等, 以便进行一些专业的数据统计、数据建模等。

5.数据展现

俗话说:字不如表,表不如图。通常情况下,数据分析的结果都会通过图表方式进行展现,常用的图表包括饼图、折线图、条形图、散点图等。借助图表展现数据的方式,可以更加直观  地呈现信息、观点和建议。

### 基于粒子群优化算法路径规划实现 #### 粒子群优化算法简介 粒子群优化(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为而提出的群体智能优化算法。该算法通过个体之间的协作与竞争来寻找最优解,在解决连续空间中的最优化问题方面表现出色[^2]。 #### 动态化学品车辆运输路径规划案例分析 针对特定应用场景下的路径规划问题,PSO被用来设计一种新型的动态路径规划方案。此方法不仅考虑了静态因素如距离成本,还引入了实时路况信息作为动态调整依据。具体来说,每个粒子代表一条可能的行驶路线;其适应度函数综合考量了行程时间和安全风险等多个维度指标。随着迭代次数增加,整个种群逐渐向更优解逼近直至满足终止条件为止。 #### MATLAB代码示例 下面给出一段简化版的MATLAB程序片段用于展示如何利用PSO来进行简单的两点间最佳路径搜索: ```matlab function [bestPath,bestFitness]=pso_path_planning(startPoint,endPoint,mapInfo) % 参数初始化... for iter=1:maxIterNum for i=1:numParticles % 更新位置和速度... fitness(i)=evaluate_fitness(particles{i},mapInfo); if(fitness(i)<personalBestFitness(i)) personalBestPosition{i}=particles{i}; personalBestFitness(i)=fitness(i); if(personalBestFitness(i)<globalBestFitness) globalBestFitness=personalBestFitness(i); globalBestPosition=personalBestPosition{i}; end end % 根据新得到的最佳位置更新当前粒子的速度和方向... end disp(['Iteration ',num2str(iter),': Best Fitness=',num2str(globalBestFitness)]); % 判断是否达到结束标准... end bestPath=globalBestPosition; bestFitness=globalBestFitness; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

律己杂谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值