DL
算法学习者
计算机各种知识学习笔记
展开
-
华为Atlas 200 DK行人识别
人体检测开发者将本Application部署至Atlas 200 DK或者AI加速云服务器上实现对本地mp4文件或者RTSP视频流进行解码,对视频帧中的行人和人脸进行检测并对其属性进行预测,生成结构化信息发送至Server端进行保存、展示的功能。前提条件部署此Sample前,需要准备好以下环境:已完成Mind Studio的安装。 已完成Atlas 200 DK开发者板与Mind...转载 2019-11-21 13:29:11 · 10508 阅读 · 2 评论 -
在有机器学习和深度学习的基础上,如何自学AutoML算法?
作者:FedAI联邦学习链接:https://www.zhihu.com/question/334021426/answer/840727058来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。AutoML技术有很多种,包括:神经网络架构搜索 优化器搜索 自动添加 元学习 超参数优化 ......如果有机器学习和深度学习经验的话,下边这些“...转载 2019-10-31 15:46:55 · 1267 阅读 · 0 评论 -
使用GraphViz画caffe/torch的网络结构图
caffe的Python接口中有一个很不错的功能:画网络结构图,虽然画得并不好看,但可以给人一种直观的感受。一、准备 首先caffe的Python接口当然是必备的了,还没有生成python接口的同学可以参照我的上一篇博客来生成。 然后是需要安装protobuf的python接口,可以参照这篇博客进行安装,安装过程比较简单,就不赘述了。 安装GraphViz:htt转载 2016-12-01 14:59:58 · 7277 阅读 · 0 评论 -
图像分割方法deeplab以及Hole算法解析
尊重原创,转载请注明:http://blog.csdn.net/tangwei2014deeplab发表在ICLR 2015上。论文下载地址:Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFS.deeplab方法概述 deeplab方法分为两步走,第一步仍然采转载 2016-12-01 16:18:14 · 9303 阅读 · 0 评论 -
ssd 安装
详见 https://github.com/weiliu89/caffe/tree/ssd原创 2016-11-21 13:34:08 · 6833 阅读 · 0 评论 -
Training LeNet on MNIST with Caffe
1. 下载数据集cd $CAFFE_ROOT./data/mnist/get_mnist.sh./examples/mnist/create_mnist.shIf it complains that wget or gunzip are not installed, you need to install them respectively. After runnin原创 2016-11-21 14:54:33 · 6383 阅读 · 0 评论 -
google batchnorm 资料总结
训练webface 李子青提出的大网络,总是出现过拟合,效果差。 尝试使用batchnorm。参考博客: http://blog.csdn.NET/malefactor/article/details/51549771 cnn 和rnn 中如何引入batchnormhttp://blog.csdn.Net/happynear/article/details/44238541 Go转载 2016-12-04 13:03:01 · 6630 阅读 · 0 评论 -
faster-rcnn 之 RPN网络的结构解析
【说明】:欢迎加入:faster-rcnn 交流群 238138700,我想很多人在看faster-rcnn的时候,都会被RPN的网络结构和连接方式纠结,作者在文中说的不是很清晰,这里给出解析;【首先】:大家应该要了解卷积神经网络的连接方式,卷积核的维度,反向传播时是如何灵活的插入一层;这里我推荐一份资料,真是写的非常清晰,就是MatConvet的用户手册,这个框架底层借用的是caffe的转载 2016-12-08 11:03:03 · 10017 阅读 · 2 评论 -
深度|NIPS 2016最全盘点:主题详解、前沿论文及下载资源(附会场趣闻)
机器之心编辑参与:微胖、杜夏德、吴攀、李亚洲当地时间 12 月 5 日到 10 日,机器学习和计算神经科学的国际顶级会议第 30 届神经信息处理系统大会(NIPS 2016)在西班牙巴塞罗那举行。在这次会议上,人工智能和机器学习领域的研究者为我们呈现了这一领域的研究前沿,其中包括:学习去学习(learning-to -learn)、生成对抗网络(GAN)、用于三维导航的强化学习、R转载 2016-12-14 10:53:37 · 7757 阅读 · 0 评论 -
ResNet && DenseNet(原理篇)
这篇博客讲现在很流行的两种网络模型,ResNet和DenseNet,其实可以把DenseNet看做是ResNet的特例 文章地址: [1]Deep Residual Learning for Image Recognition,CVPR2015 [2]Densely Connected Convolutional Networks,CVPR2016本篇博客不讲论文的内容,只讲主转载 2016-12-20 10:08:08 · 9717 阅读 · 0 评论 -
干货 | NIPS 2015 Reasoning, Attention, Memory Workshop
今天分享的是 NIPS 2015 的 workshop 之一,Reasoning Attention Memory(RAM)中的 accepted paper。这个 workshop 中有几个看点,一个是请来了一些非 DL 的研究者,比如 cognitive science 方向的,带来了生物学角度的 memory 研究;二来是有很多开创性工作,比如公布了一个数据集,或者发表了对未来某个领域的一些转载 2017-02-06 17:08:15 · 7470 阅读 · 0 评论 -
深度学习(十三)caffe之训练数据格式
caffe之训练数据格式原文地址:http://blog.csdn.net/hjimce/article/details/49248231作者:hjimcecaffe对于训练数据格式,支持:lmdb、h5py……,其中lmdb数据格式常用于单标签数据,像分类等,经常使用lmdb的数据格式。对于回归等问题,或者多标签数据,一般使用h5py数据的格式。当然好像还有其它格式的转载 2017-02-14 19:09:40 · 6657 阅读 · 0 评论 -
python开源库——h5py快速指南
1. 核心概念一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group。在使用h5py的时候需要牢记一句话:groups类比词典,dataset类比Numpy中的数组。 HDF5的dataset虽然与Numpy的数组在接口上很相近,但是支持更多对外透明的存储特征,如数据转载 2017-02-14 19:18:22 · 9741 阅读 · 0 评论 -
MTCNN训练数据整理
分为三层网路PRO1.输入:积分图像输出:prob1 边框概率,可以得出粗略得边框信息conv4-2 边框偏移2.输入:根据第一步提取的边框,提取图片,作为batch进行输入输出:prob1: batch_size * 2conv5-2: batch_size * 43.输入:根据第二步提取的边框,提取图片,作为batch进行输入原创 2017-02-17 14:25:16 · 14549 阅读 · 6 评论 -
Caffe中Loss Layer原理的简单梳理
1.SoftmaxWithLoss对一对多的分类任务计算多项逻辑斯蒂损失,并通过softmax传递预测值,来获得各类的概率分布。该层可以分解为SoftmaxLayer+MultinomialLogisticLossLayer,但它的梯度计算在数值上更为稳健。在测试时,该层可用SoftmaxLayer替代。前向传播bottom: 1.(N×C×H×W)维的预测得分x,N是ba转载 2017-02-24 18:17:20 · 10197 阅读 · 0 评论 -
Caffe中Loss Layer原理的简单梳理
1.SoftmaxWithLoss对一对多的分类任务计算多项逻辑斯蒂损失,并通过softmax传递预测值,来获得各类的概率分布。该层可以分解为SoftmaxLayer+MultinomialLogisticLossLayer,但它的梯度计算在数值上更为稳健。在测试时,该层可用SoftmaxLayer替代。前向传播bottom: 1.(N×C×H×W)维的预测得分x,N是ba转载 2017-03-18 00:44:41 · 6289 阅读 · 0 评论 -
反向传导算法
假设我们有一个固定样本集 ,它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 ,其代价函数为:这是一个(二分之一的)方差代价函数。给定一个包含 个样例的数据集,我们可以定义整体代价函数为:以上关于定义中的第一项是一个均方差项。第二项是一个规则化项(也叫权重衰减项),其目的是减小权重的幅度,防止过度拟合。[注:通常权重衰减转载 2017-03-20 17:37:54 · 6218 阅读 · 0 评论 -
梯度检验与高级优化
众所周知,反向传播算法很难调试得到正确结果,尤其是当实现程序存在很多难于发现的bug时。举例来说,索引的缺位错误(off-by-one error)会导致只有部分层的权重得到训练,再比如忘记计算偏置项。这些错误会使你得到一个看似十分合理的结果(但实际上比正确代码的结果要差)。因此,但从计算结果上来看,我们很难发现代码中有什么东西遗漏了。本节中,我们将介绍一种对求导结果进行数值检验的方法,该方法可以转载 2017-03-20 17:58:18 · 6008 阅读 · 0 评论 -
自编码算法与稀疏性
目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 。下图是一个自编码神经网络的示例。自编码神经网络尝试学习一个 的函数。换句话说,它尝试逼近一个恒等函数,从而使得输出转载 2017-03-20 17:59:24 · 6374 阅读 · 0 评论 -
神经网络
概述以监督学习为例,假设我们有训练样本集 ,那么神经网络算法能够提供一种复杂且非线性的假设模型 ,它具有参数 ,可以以此参数来拟合我们的数据。为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示:这个“神经元”是一个以 及截距 为输入值的运算单元,其输出为 ,其中函数 被称为“激活转载 2017-03-20 17:33:25 · 6348 阅读 · 0 评论 -
可视化自编码器训练结果
训练完(稀疏)自编码器,我们还想把这自编码器学到的函数可视化出来,好弄明白它到底学到了什么。我们以在10×10图像(即n=100)上训练自编码器为例。在该自编码器中,每个隐藏单元i对如下关于输入的函数进行计算:我们将要可视化的函数,就是上面这个以2D图像为输入、并由隐藏单元i计算出来的函数。它是依赖于参数的(暂时忽略偏置项bi)。需要注意的是,可看作输入的非线性特征。不过还有个问题转载 2017-03-20 18:02:06 · 6481 阅读 · 0 评论 -
稀疏自编码器符号一览表
下面是我们在推导sparse autoencoder时使用的符号一览表:符号含义训练样本的输入特征,.输出值/目标值. 这里 可以是向量. 在autoencoder中,.第 个训练样本输入为 时的假设输出,其中包含参数 . 该输出应当与目标值 具有相同的维数.连接第 层 单元和第转载 2017-03-20 18:03:44 · 6733 阅读 · 0 评论 -
Softmax回归
Contents [hide]1 简介2 代价函数3 Softmax回归模型参数化的特点4 权重衰减5 Softmax回归与Logistic 回归的关系6 Softmax 回归 vs. k 个二元分类器7 中英文对照8 中文译者简介在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标转载 2017-03-20 18:04:47 · 6221 阅读 · 0 评论 -
分分钟推导神经网络
原文链接转载 2017-03-27 23:36:29 · 6454 阅读 · 0 评论 -
深度学习(二十九)Batch Normalization 学习笔记
Batch Normalization 学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50866313作者:hjimce一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Trai转载 2017-03-07 19:56:06 · 6280 阅读 · 0 评论 -
Awesome - Most Cited Deep Learning Papers
https://github.com/terryum/awesome-deep-learning-papersA curated list of the most cited deep learning papers (since 2012)We believe that there exist classic deep learning papers which are wo转载 2017-03-21 00:28:24 · 6526 阅读 · 0 评论 -
译文 | 批量归一化:通过减少内部协变量转移加速深度网络训练
作者:Sergey Ioffe Christian Szegedy翻译:七月在线DL翻译组译者:陈媛媛 管枫 任远航责编:翟惠良 July声明:本译文仅供学习交流,有任何翻译不当之处,敬请留言指正。转载请注明出处。原文:https://arxiv.org/pdf/1502.03167v3.pdf——前言: 我们将训练过程中深度网络内部转载 2017-03-22 00:16:56 · 14633 阅读 · 1 评论 -
Jacobian矩阵和Hessian矩阵
1. Jacobian在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-1851年2月18日)命名;英文雅可比量”Jacobian”可以发音为[ja ˈko bi ən]转载 2017-03-22 00:35:49 · 6362 阅读 · 0 评论 -
神经网络与深度学习(2):梯度下降算法和随机梯度下降算法
本文总结自《Neural Networks and Deep Learning》第1章的部分内容。 使用梯度下降算法进行学习(Learning with gradient descent)1. 目标我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y(x) 能够拟合所有的训练输入x。2. 代价函数(cost function)定义一个Cost functio转载 2017-03-22 00:44:04 · 7540 阅读 · 0 评论 -
雅可比矩阵 和 海森矩阵
雅可比矩阵 假设F:Rn→Rm 是一个从欧式n维空间转换到欧式m维空间的函数。这个函数由m个实函数组成: y1(x1,...,xn), ..., ym(x1,...,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:此矩阵表示为: ,或者 这个矩阵的第i行是由梯度函数的转置yi(i=1,...,m)表示的转载 2017-03-22 00:50:04 · 10071 阅读 · 0 评论 -
ReLU深度网络能逼近任意函数的原因
今天读了一遍谷歌大脑工程师Eric Jang的一个解答,想把这个知识与大家分享!最近也发现,有很多牛人喜欢在博客中分享DL的相关知识,所以个人感觉有空可以在博客中度阅读一些相关内容,对自己基础和深度了解有很大的帮助,也在此感谢那些为DL&ML默默共享的大牛们,让我们一起努力学习!!!那就不多说了,开始对这个话题的理解。嘿嘿!有很多人问:为什么ReLU深度网络能逼近任意函数?对此,其转载 2017-03-22 01:33:33 · 7113 阅读 · 0 评论 -
论文心得:BatchNorm及其变体
本文记录BatchNormalization的总结思考及其拓展,目前收录BatchRenormalization、AdaBN、WeightNormalization、NormalizationPropagation。0.BatchNormalization该层的设计是为了解决Internal Covariate Shift的问题,这里首先要区分一下Internal Covari转载 2017-04-07 14:47:55 · 8352 阅读 · 0 评论 -
开源|2017 CVPR(Oral Paper):多目标实时体态估测 项目开源
本目录下的代码赢得了2016年MSCOCO关键点挑战赛以及2016年ECCV最佳演示奖,并发表在2017年CVPR的口头论文(Oral Paper)中。 演示视频: 在论文中,我们提出了一种自下而上的方法进行多人姿态估计,这种方法不需要任何行人检测的算法。 论文地址:https://arxiv.org/abs/1611.08050转载 2017-03-22 12:43:06 · 10374 阅读 · 0 评论 -
MTCNN训练整理
最新人工智能论文:http://paperreading.clubMTCNN主要包括三个部分,PNet,RNet,ONet其中PNet在训练阶段的输入尺寸为12*12,RNet的输入尺寸为24*24,ONet的输入尺寸为48*48. PNet网络参数最小,ceffemodel仅有28.2KB,所以速度最快.RNet的网络参数次之,caffemodel大小为407.9KB,ONet的...原创 2017-04-07 16:11:11 · 28627 阅读 · 13 评论 -
A guide to receptive field arithmetic for Convolutional Neural Networks
A guide to receptive field arithmetic for Convolutional Neural NetworksThe receptive field is perhaps one of the most important concepts in Convolutional Neural Networks (CNNs) that deserves more转载 2017-04-07 18:58:20 · 7647 阅读 · 0 评论 -
深度学习超参数简单理解------>learning rate,weight decay和momentum
最新人工智能论文:http://paperreading.club说到这些参数就会想到Stochastic Gradient Descent (SGD)!其实这些参数在caffe.proto中 对caffe网络中出现的各项参数做了详细的解释。Learning Rate学习率决定了权值更新的速度,设置得太大会使结果超过最优值,太小会使下降速度过慢。仅靠人为干预调整参数需要不断修改学习率,...转载 2017-04-07 19:21:11 · 34582 阅读 · 1 评论 -
OpenAI 发现独特情感神经元,无监督学习系统表征情感取得突破
新智元编译来源:OpenAI翻译:弗格森 零夏 【新智元导读】OpenAI 的研究员今天在博客上宣布,他们开发了一个无监督学习的系统,能够很好地对情感进行表征。在数据集 Stanford Sentiment Treebank上,他们获得了当下行业内最高的情感分析准度。现在论文和代码已经公开。在研究的过程中,他们还发现,算法中实际上存在着一种高度预测情绪值的“情感神经元”。转载 2017-04-07 22:49:52 · 7562 阅读 · 0 评论 -
Understanding LSTM Networks
Recurrent Neural NetworksHumans don’t start their thinking from scratch every second. As you read this essay, you understand each word based on your understanding of previous words. You don’t thro转载 2017-03-23 12:24:52 · 6189 阅读 · 0 评论 -
PaperWeekly 第二十五期 --- 增强学习在image caption任务上的应用
引言 第二十二期的PaperWeekly对Image Captioning进行了综述。今天这篇文章中,我们会介绍一些近期的工作。(如果你对Image Captioning这个任务不熟悉的话,请移步二十二期PaperWeekly 第二十二期---Image Caption任务综述) Image Captioning的模型一般是encoder-decoder的模型。模型对$p(转载 2017-03-23 12:27:53 · 8672 阅读 · 0 评论 -
【榜单】机器学习&深度学习近三年被引最多论文 Top 20,图像识别、GAN等(附下载)
新智元编译来源:kdnuggets翻译:刘小芹 胡祥杰 张易 【新智元导读】 深度学习近年来取得了很多惊人的进展,其中一些重要的研究论文可能会达成让数十亿人使用的技术突破。本文搜集了自2014年来,机器学习和深度学习最重要(被引最多)的20篇论文,作者包括 Hinton、Bengio、李飞飞、Goodfellow、何恺明、黄广斌等,涉及图像识别、GAN、Dropout转载 2017-04-09 14:52:49 · 11648 阅读 · 0 评论