caffe
算法学习者
计算机各种知识学习笔记
展开
-
caffe HDF5Data 层使用及数据生成
参考文章:http://blog.csdn.NET/shuzfan/article/details/52503683http://www.cnblogs.com/yinheyi/p/6083855.html有些时候,我们的输入不是标准的图像,而是其它一些格式,比如:频谱图、特征向量等等,这种情况下LMDB、Leveldb以及ImageData layer等就不好使了,这时候我们转载 2017-02-24 14:19:14 · 9194 阅读 · 0 评论 -
生成hdf5文件用于多标签训练
导入相关库import randomfrom PIL import Imageimport numpy as npimport h5py1234512345文件配置IMAGE_DIR = ['image_train', 'image_test']HDF5_FILE = ['hdf5_train.h5', 'hdf5_test.h5']LIST_FILE = ['list转载 2017-02-24 14:21:20 · 7699 阅读 · 0 评论 -
梳理caffe代码loss(二十二)
下面是一个博友对于NG课程的翻译:接下来偷懒一下直接上传图片,caffe中的常用的loss函数(后面文章会梳理每一个Loss):loss有一个细节问题就是Loss weights(损失权重),用来表征不同Layer产生的loss的重要性,Layer名称中以Loss结尾表示这是一个会产生loss的La转载 2017-03-05 17:07:55 · 6375 阅读 · 0 评论 -
caffe 实现多标签输入(multilabel、multitask)
caffe 本身并不支持 多类标的输入, 该框架主要用于解决图片分类的问题,而目前,两个重要的问题需要多标签的输入:多任务学习(multi-task)和多标签分类(multi-label),本文针对这两个问题,实现了多标签的输入 目前,网上流行的多标签输入方法主要有以下四种: 1. 最简单,使用mxnet,它本身支持了多标签分类的问题,因此转载 2017-03-16 15:25:46 · 6735 阅读 · 0 评论 -
ubuntu 安装caffe精简教程
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compilersudo apt-get install --no-install-recommends libboost-all-devsudo apt-get inst原创 2017-04-07 18:21:38 · 6536 阅读 · 0 评论 -
深度学习笔记5:池化层的实现
池化层的推导池化层的输入一般来源于上一个卷积层,主要作用是提供了很强的鲁棒性(例如max-pooling是取一小块区域中的最大值,此时若此区域中的其他值略有变化,或者图像稍有平移,pooling后的结果仍不变),并且减少了参数的数量,防止过拟合现象的发生。池化层一般没有参数,所以反向传播的时候,只需对输入参数求导,不需要进行权值更新。池化层的前向计算转载 2017-11-01 23:42:51 · 5073 阅读 · 0 评论