NLP
文章平均质量分 95
算法学习者
计算机各种知识学习笔记
展开
-
自然场景文本检测识别技术综述
本文及其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造,自2019年1月出版以来已重印3次。书的购买链接 书的勘误,优化,源代码资源番外青蛇: 姐, 图像文本检测和识别领域现在的研究热点是什么?白蛇: 白纸黑字的扫描文档识别技术已经很成熟,而自然场景图像文本识别的效果还不理想。倾斜字、艺术字、变形字、模...转载 2019-10-08 13:47:20 · 1991 阅读 · 0 评论 -
ParlAI: A new software platform for dialog research
One of the long-term goals in AI is to develop intelligent chat bots that can converse with people in a natural way. Existing chat bots can sometimes complete specific independent tasks but have troub转载 2017-05-18 03:23:12 · 815 阅读 · 0 评论 -
BLEU : 一种机器翻译自动评价方法
BLEU : 一种机器翻译自动评价方法BLEU:a Method for Automatic Evaluation of Machine Translation(1) Kishore Papineni,Salim Roukos,Todd Ward, and Wei-Jing Zhu编译: 洪洁 文章来源:多语工程技术研究中心《云翻译技术》第12期 摘要:这篇论文是关于BLE转载 2017-05-17 15:17:21 · 8953 阅读 · 1 评论 -
Taming Recurrent Neural Networks for Better Summarization
This is a blog post about our latest paper, Get To The Point: Summarization with Pointer-Generator Networks, to appear at ACL 2017. The code is available here.The internet age has brought unfath转载 2017-05-26 15:58:24 · 1089 阅读 · 0 评论 -
【推荐】文本处理的卷积方法
摘要转自:爱可可-爱生活tl;drRNNS work great for text but convolutions can do it fasterAny part of a sentence can influence the semantics of a word. For that reason we want our network to se转载 2017-05-25 23:10:35 · 1485 阅读 · 0 评论 -
【学习】QA相关资源/数据集/论文列表
摘要转自:爱可可-爱生活PapersMemory NetworksEnd-To-End Memory NetworksTowards AI-Complete Question Answering: A set of prerequisite toy tasksLarge Scale simple question answerin转载 2017-05-25 23:12:03 · 3881 阅读 · 2 评论 -
论文引介 | NMT with Conditional Sequence Generative Adversarial Nets
文章原名:Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets 作者:Zhen Yang, Wei Chen, Feng Wang and Bo Xu 单位:Institute of Automation, Chinese Academy of Sci转载 2017-04-19 17:53:32 · 7797 阅读 · 0 评论 -
华为李航:NLP 有 5 个基本问题,深度学习有4个做得很好
对于自然语言理解,有两种定义。第一种是计算机能够将所说的语言映射到计算机内部表示;另一种是基于行为的,你说了一句话,计算机做出了相应行为,就认为计算机理解了自然语言。后者的定义,更广为采用。为什么自然语言理解很难?其本质原因是语言是一种复杂的现象。自然语言有5个重要特点,使得计算机实现自然语言处理很困难:语言是不完全有规律的,规律是错综复杂的。有一定的规律,也有很多例外。因为语言是转载 2017-04-19 19:02:04 · 11915 阅读 · 1 评论 -
PaperWeekly 第34期 | VAE在chatbot中的应用
赵天成卡耐基梅隆大学博士生研究方向为口语对话系统欢迎访问以下链接调戏作者开发的chatbothttp://www.cs.cmu.edu/~tianchez/(Task-oriented)任务驱动对话系统最近在工业界和学术界都大火了一把。不同于最近同样的火热的闲聊 chatbot,任务驱动地话系统往往有一个明确的使用转载 2017-04-19 11:53:19 · 7871 阅读 · 0 评论 -
A novel approach to neural machine translation
Language translation is important to Facebook's mission of making the world more open and connected, enabling everyone to consume posts or videos in their preferred language — all at the highest possi转载 2017-05-18 03:24:39 · 1094 阅读 · 0 评论 -
UNDERSTANDING CONVOLUTIONAL NEURAL NETWORKS FOR NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakthroughs in Image Classification and are the core of most Computer V转载 2017-04-27 00:53:28 · 6366 阅读 · 0 评论 -
NLP:language model(n-gram/Word2Vec/Glove)
首先,大概讲一下自然语言处理的背景。互联网上充斥着大规模、多样化、非结构化的自然语言描述的文本,如何较好的理解这些文本,服务于实际业务系统,如搜索引擎、在线广告、推荐系统、问答系统等, 给我们提出了挑战。例如在效果广告系统中,需要将 Query(User or Page) 和广告 Ad 投影到相同的特征语义空间做精准匹配,如果 Query 是用户,需要基于用户历史数据离线做用户行为分析,如果 Qu...转载 2018-04-18 12:55:52 · 2483 阅读 · 0 评论 -
Translation with a Sequence to Sequence Network and Attention
http://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html#exercisesTranslation with a Sequence to Sequence Network and AttentionAuthor: Sean RobertsonIn this project转载 2017-09-29 02:51:08 · 1547 阅读 · 0 评论 -
【AI前沿】机器阅读理解与问答·Dynamic Co-Attention Networks
内容速览协同注意力 Co-Attention动态迭代 Dynamic IterationDCN模型Highway和Maxout简介实验与总结在上期的文章【AI前沿】机器阅读理解与问答·介绍篇中,我们介绍了机器阅读理解与问答这一任务。介绍了该任务现在的Benchmark数据集(由Stanford发布的SQuAD)、基本的评价标准(Exact-match、F1-Scor转载 2017-09-04 10:54:31 · 4513 阅读 · 1 评论 -
Dynamic Coattention Networks For Question Answering
Dynamic Coattention Networks For Question AnsweringCaiming Xiong, Victor Zhong, Richard Socher(Submitted on 5 Nov 2016 (v1), last revised 13 Feb 2017 (this version, v3))Several deep lear转载 2017-09-04 10:42:10 · 1393 阅读 · 0 评论 -
Multimodal Compact Bilinear Pooling for Multimodal Neural Machine Translation
Multimodal Compact Bilinear Pooling for Multimodal Neural Machine TranslationJean-Benoit Delbrouck, Stephane Dupont(Submitted on 23 Mar 2017)In state-of-the-art Neural Machine Translatio转载 2017-06-11 09:42:55 · 836 阅读 · 0 评论 -
PaperWeekly 第38期 | SQuAD综述
胡明昊国防科学技术大学博士生SQuAD比赛第三名研究方向为自动问答系统1. 引言教机器学会阅读是近期自然语言处理领域的研究热点之一,也是人工智能在处理和理解人类语言进程中的一个长期目标。得益于深度学习技术和大规模标注数据集的发展,用端到端的神经网络来解决阅读理解任务取得了长足的进步。本文是一篇机器阅读理解的综述文章,主要聚焦于介绍公布在 SQuAD(Stan转载 2017-06-22 09:17:21 · 6896 阅读 · 1 评论 -
不是你无法入门自然语言处理(NLP),而是你没找到正确的打开方式
AI研习社按:本文作者 Mr.Scofield,原文载于作者个人博客,雷锋网已获授权。〇、序之前一段时间,在结合深度学习做 NLP 的时候一直有思考一些问题,其中有一个问题算是最核心一个:究竟深度网络是怎么做到让各种 NLP 任务解决地如何完美呢?到底我的数据在 NN 中发什么了什么呢?并且,不少的 terms like: 词向量、word embedding、分布式表示、转载 2017-06-04 17:19:37 · 5488 阅读 · 0 评论 -
Multimodal Word Distributions
Multimodal Word DistributionsBen Athiwaratkun, Andrew Gordon Wilson(Submitted on 27 Apr 2017)Word embeddings provide point representations of words containing useful semantic information转载 2017-06-17 21:46:11 · 999 阅读 · 0 评论 -
IMPLEMENTING A CNN FOR TEXT CLASSIFICATION IN TENSORFLOW
The full code is available on Github.In this post we will implement a model similar to Kim Yoon’s Convolutional Neural Networks for Sentence Classification. The model presented in the paper ac转载 2017-04-27 00:54:07 · 7086 阅读 · 0 评论 -
讲堂| 周明:自然语言对话引擎
“微软AI讲堂”是我们近期推出的一个系列活动。我们希望借助讲座、分享、讨论等多样化的形式,走进校园,传递知识,普及科学,为大家揭开人工智能的神秘面纱。上周,微软AI讲堂的首站来到了清华大学。此次分享会聚焦人工智能领域的自然语言理解方向,清华大学计算机科学与技术系教授、党委书记孙茂松老师以及微软亚洲研究院副院长周明博士两位自然语言理解领域的顶级专家分别从不同的角度带来了他们的分享。今转载 2017-04-14 16:21:07 · 8837 阅读 · 0 评论 -
带你搞懂朴素贝叶斯分类算法
最新人工智能论文:http://paperreading.club带你搞懂朴素贝叶斯分类算贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。1 分类问题综述对于分类问题,其实...转载 2017-04-14 16:19:33 · 170599 阅读 · 77 评论 -
袁毓林 李强:怎样用物性结构知识解决“网球问题”?(下)
“网球问题”指怎样把racquet(网球拍)、ball(网球)和net(球网)之类具有情境联想关系的词汇概念联系起来、发现它们之间的语义和推理关系。这是一个自然语言处理和相关的语言知识资源建设的世界性难题。该文以求解“网球问题”为目标,对目前比较主流的几种语言词汇和概念知识库系统(包括WordNet、VerbNet、FrameNet、ConceptNet等)进行检讨,指出它们在解决“网球问题”上还转载 2017-04-13 17:12:00 · 8390 阅读 · 0 评论 -
Python NLTK学习6(创建词性标注器)除特别注明外,本站所有文章均为刘杰的个人网站原创 转载请注明出处: http://www.burnelltek.com/blog/60740e24d2f
除特别注明外,本站所有文章均为刘杰的个人网站原创转载请注明出处: http://www.burnelltek.com/blog/60740e24d2f711e6841d00163e0c0e36本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。默认标注器默认标注器为每个单词分配同样的标记,尽管很平庸,但它也是有作用的,先看示例:import转载 2017-03-28 20:40:40 · 7203 阅读 · 0 评论 -
Python NLTK学习5(词性标注)
本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。词性标注器一个词性标注器处理一个词序列,为每个词附加一个词性标记,我们先看一个示例:import nltkwords = nltk.word_tokenize('And now for something completely different')print(words)word_tag = nltk.p转载 2017-03-28 20:33:34 · 11821 阅读 · 0 评论 -
python自然语言处理工具NLTK各个包的意思和作用总结
【转】http://www.myexception.cn/perl-python/464414.html 【原】Python NLP实战之一:环境准备最近正在学习Python,看了几本关于Python入门的书和用Python进行自然语言处理的书,如《Python编程实践》、《Python基础教程》(第2版)、《Python自然语言处理》(影印版)。因为以前是学Java转载 2017-03-28 20:29:54 · 11325 阅读 · 0 评论 -
总结 | 近期Chatbot领域值得读的paper
引言Chatbot大热不仅仅是工业界的现象,学术界也跟着烧起了一把火。本文汇总了最近半年内质量比较高的paper,旨在给想了解这一领域的学生、老师和算法工程师们一个reading list,同时paperweekly也会慢慢消化这些paper,分享出更多的paper notes。本文共包括24篇paper,包含了Chatbot的方方面面。1 Dialog C转载 2017-01-20 17:49:28 · 9770 阅读 · 0 评论 -
主题模型TopicModel:LDA主题模型的评估
http://blog.csdn.net/pipisorry/article/details/42460023基础知识:熵[熵与互信息 ]皮皮blogPerplexity定义perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比较转载 2017-01-16 13:26:06 · 10371 阅读 · 0 评论 -
语言表示学习
转载 2016-12-21 21:02:27 · 6826 阅读 · 0 评论 -
用深度学习来获取文本语义:词向量应用于自然语言处理
词向量是一种把词处理成向量的技术,并且保证向量间的相对相似度和语义相似度是相关的。这个技术是在无监督学习方面最成功的应用之一。传统上,自然语言处理(NLP)系统把词编码成字符串。这种方式是随意确定的,且对于获取词之间可能存在的关系并没有提供有用的信息。词向量是NLP领域的一个替代方案。它把词或短语映射成实数向量,把特征从词汇表大小的高维度空间降低到一个相对低的维度空间。例如,让我们看看四个词:转载 2016-12-14 10:35:04 · 9321 阅读 · 0 评论 -
Deep Learning in NLP (一)词向量和语言模型
这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享。其中必然有局限性,欢迎各种交流,随便拍。 Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果。关于这个原因,引一条我比较赞同的微博。@王威廉:Steve Renals算了一下icassp录取文章题目中包转载 2016-12-09 17:03:24 · 6672 阅读 · 0 评论 -
深度学习 自然语言处理 资料推荐
本次首先推荐邱锡鹏老师的两个报告:1. Deep learning for natural language processinghttp://nlp.fudan.edu.cn/xpqiu/slides/20160618_DL4NLP@CityU.pdf主要讨论了深度学习在自然语言处理中的应用。其中涉及的模型主要有卷积神经网络,递归神经网络,循环神经网络网络等,应用领域主要转载 2017-03-22 01:14:07 · 7208 阅读 · 0 评论 -
NLTK的词性
NOUN n,VERB v ,ADJ a, ADV r, ADJ_SAT s NOUN: [('s', ''), ('ses', 's'), ('ves', 'f'), ('xes', 'x'), ('zes', 'z'), ('ches', 'ch'), ('shes', 'sh'), ('men', 'man'), ('转载 2017-03-28 23:35:19 · 6898 阅读 · 0 评论 -
《中文信息学报》佳文共赏∣ 袁毓林 李强:怎样用物性结构知识解决“网球问题”?(上)
文章导读“网球问题”指怎样把racquet(网球拍)、ball(网球)和net(球网)之类具有情境联想关系的词汇概念联系起来、发现它们之间的语义和推理关系。这是一个自然语言处理和相关的语言知识资源建设的世界性难题。该文以求解“网球问题”为目标,对目前比较主流的几种语言词汇和概念知识库系统(包括WordNet、VerbNet、FrameNet、ConceptNet等)进行检讨,指出它们在解决转载 2017-04-13 17:10:27 · 7459 阅读 · 0 评论 -
【中文分词系列】 8. 更好的新词发现算法
如果依次阅读该系列文章的读者,就会发现这个系列共提供了两种从0到1的无监督分词方案,第一种就是《【中文分词系列】 2. 基于切分的新词发现》,利用相邻字凝固度(互信息)来做构建词库(有了词库,就可以用词典法分词);另外一种是《【中文分词系列】 5. 基于语言模型的无监督分词》,后者基本上可以说是提供了一种完整的独立于其它文献的无监督分词方法。但总的来看,总感觉前面一种很快很爽,却又显得转载 2017-04-03 00:35:29 · 13273 阅读 · 2 评论 -
word2vec python 接口安装使用
https://github.com/danielfrg/word2vecInstallationI recommend the Anaconda python distributionpip install word2vecWheel: Wheels packages for OS X and Windows are provided on Pypi on转载 2017-04-10 14:26:32 · 11787 阅读 · 3 评论 -
CIPS青工委学术专栏第6期 | 机器阅读理解任务综述
林鸿宇 韩先培中国科学院软件研究所简介自然语言处理的长期目标是让计算机能够阅读、处理文本,并且理解文本的内在含义。理解,意味着计算机在接受自然语言输入后能够给出正确的反馈[11]。传统的自然语言处理任务,例如词性标注、句法分析以及文本分类,更多地聚焦于小范围层面(例如一个句子内)的上下文信息,更加注重于词法以及语法信息。然而更大范围、更深层次的上下文语义信息在人类理解文本的转载 2017-04-09 16:25:43 · 10221 阅读 · 0 评论 -
CIPS青工委学术专栏第10期 | 对话系统任务综述与基于POMDP的对话系统
题目:对话系统任务综述与基于POMDP的对话系统作者:李林琳,赵世奇注:本文的第一部分主要内容基于“Review of spoken dialogue systems”(López-Cózar et al., 2015);第二部分翻译自英文原文“POMDP-based statistical spokendialog systems: A review”(Yong et al.,转载 2017-04-09 16:24:19 · 8282 阅读 · 0 评论 -
CIPS青工委学术专栏第11期 | 基于深度学习的聊天机器人综述
题目:基于深度学习的聊天机器人综述作者:宫叶云、张奇(复旦大学计算机与科学技术学院)作者简介:张奇,复旦大学计算机科学技术学院副教授,博士生导师,主要研究领域为自然语言处理与信息检索。在ACM Transactions、IJCAI、AAAI、SIGIR、ACL、EMNLP等自然语言处理和信息检索领域著名学术期刊和会议上发表论文40余篇。承担10余项国家自然科学基金、国家86转载 2017-04-09 15:51:35 · 7304 阅读 · 0 评论 -
深度学习在自然语言处理中的应用
原文:Diving Into Natural Language Processing 作者:Adit Deshpande 编译:KK4SBB 欢迎人工智能领域技术投稿、约稿、给文章纠错,请发送邮件至heyc@csdn.net自然语言处理是研究和实现人与计算机之间用自然语言进行有效通信的各种理论和方法。本文主要介绍深度学习在自然语言处理中的应用。自然语言处理简介转载 2017-04-09 15:43:19 · 11333 阅读 · 0 评论