玩转Dragonboard 410c USB摄像头-人脸识别

      人脸识别是一个非常酷的技术,在移动支付、安防、娱乐等众多领域有着非常广泛的应用,今天就带大家一起来体验一下如何利用dragonboard 410c来实现人脸识别功能,这里我们使用的是USB摄像头,连接Dragoboard 410c开发板,开发板上运行linux debain操作系统,通过Python脚本和opencv来实现人脸识别处理。



     首先我们可以按照http://blog.csdn.net/andymfc/article/details/52805284中的硬件环境搭建方式,搭建好自己的开发环境,如上图所示,然后我们就可以开始编写我们的人脸识别程序了,这里使用的是Python的cv2库来实现摄像头数据的采集和人脸识别,具体代码如下:

     #!/usr/bin/env python
     import cv2, sys
     import numpy as np
     DEVICE_NUMBER = 0
     FONT_FACES = [
    cv2.FONT_HERSHEY_SIMPLEX,
    cv2.FONT_HERSHEY_PLAIN,
    cv2.FONT_HERSHEY_DUPLEX,
    cv2.FONT_HERSHEY_COMPLEX,
    cv2.FONT_HERSHEY_TRIPLEX,
    cv2.FONT_HERSHEY_COMPLEX_SMALL,
    cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
    cv2.FONT_HERSHEY_SCRIPT_COMPLEX
    ]
   if len(sys.argv) > 1:
    XML_PATH = sys.argv[1]
    else:
    print "Error: XML path not defined"
    sys.exit(1)
    # Init the Cascade Classifier
    faceCascade = cv2.CascadeClassifier(XML_PATH)
    # Init webcam
    vc = cv2.VideoCapture(DEVICE_NUMBER)
    # Check if the webcam init was successful
    if vc.isOpened(): # try to get the first frame
       retval, frame = vc.read()
    else:
    sys.exit(1)
     # If webcam read successful, loop indefinitely
     i = 0
     while retval:
    # Define the frame which the webcam will show
    frame_show = frame
    if i%5 == 0:
        # Convert frame to grayscale
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # Detect objects and return an array of faces
        faces = faceCascade.detectMultiScale(
            frame,
            scaleFactor=1.2,
            minNeighbors=2,
            minSize=(50, 50),
            flags=cv2.cv.CV_HAAR_SCALE_IMAGE
        )
    # Draw a rectangle around the faces
    for (x, y, w, h) in faces:
        cv2.rectangle(frame_show, (x, y), (x+w, y+h), (0, 0, 255), 2)
    # Show the image on the screen
    cv2.imshow("DB410c Workshop #6: Facial Detection", frame_show)

    # Grab next frame from webcam
    retval, frame = vc.read()
    # Exit program after waiting for a pressed key
       if cv2.waitKey(1) == 27:
        break
    i += 1

  以上就是整个python实现的人脸识别代码,在代码中我们利用了opencv的机器学习,所以还需要一个分类文件,这个文件利用xml文件进行描述,这是采用opencv提供的人脸是被分类器,这里已经训练好,可以直接用就可以,具体的文件大家可以到http://pan.baidu.com/s/1milnAnY,下载后和代码文件放在同一个文件夹下即可,大家也可以到opencv 官网上下载。

   介绍好代码后,我们就可以来进行测试了,我们新建一个文件夹 mkdir face_test,然后新建一个文件face_test.py,打开该文件,然后复制上述代码到文件,保存,然后按照上述方法到http://pan.baidu.com/s/1milnAnY上下载xml文件放入到该文件夹下,接着使用chmod 777 face_test.py修改Python脚本的权限,改为可执行文件,接着拔掉鼠标欧连接上USB网络摄像头,就可以开始进行测试了,测试运行脚本代码如下:

     python face_test.py frontalface_default.xml  其中frontalface_default.xml是下载的xml文件,训练好的分类器。

    运行后如果你对准脸,就可以看到有一个红色的矩形框标注你的脸部,表示识别检测到你的脸部,这里具体涉及到肖像权,不展示演示结果图片了。





1. 功能概述 利用普通的USB摄像头获取动态图像实时的检测出图像中的人脸并用红框框出。 2. 程序清单 1)CameraDS.cpp bool CCameraDS::OpenCamera(int nCamID, bool bDisplayProperties=true, int nWidth=320, int nHeight=240); 打开摄像头,nCamID指定打开哪个摄像头,取值可以为0,1,2,... bDisplayProperties指示是否自动弹出摄像头属性页 nWidth和nHeight设置的摄像头的宽和高,如果摄像头不支持所设定的宽度和高度,则返回false void CloseCamera(); 关闭摄像头,析构函数会自动调用这个函数 static int CameraCount(); 返回摄像头的数目 可以不用创建CCameraDS实例,采用int c=CCameraDS::CameraCount();得到结果。 static int CCameraDS::CameraName(int nCamID, char* sName, int nBufferSize); 根据摄像头的编号返回摄像头的名字 nCamID: 摄像头编号 sName: 用于存放摄像头名字的数组 nBufferSize: sName的大小 可以不用创建CCameraDS实例,采用CCameraDS::CameraName();得到结果。 int GetWidth(); 返回图像宽度 int GetHeight(); 返回图像高度 IplImage * QueryFrame(); 抓取一帧,返回的IplImage不可手动释放! 返回图像数据的为RGB模式的Top-down(第一个字节为左上角像素),即IplImage::origin=0(IPL_ORIGIN_TL) 2)haarcascade.cpp CvHaarClassifierCascade* load_object_detector( const char* cascade_path ); 用于从文件中装载训练好的利用哈尔特征的级联分类器(网上下的) cascade_path:文件路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值