题目描述:
计算x的平方根,保留8位小数。
输入:5
输出:2.23606797
解题思路
本题主要考察对x求平方根的数学思想。在大多数语言中都提供了数学方法的实现。那么要求一个数的平方根,是怎么实现的呢?实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration)
二分法
以计算5的平方根为例:
- 计算5的一半,即5/2=2.5
- 平方验证:2.5*2.5=6.25>5,则说明5的平方根的上限为2.5
- 计算2.5的一半,即2.5/2=1.25
- 平方验证:1.25*1.25=1.5625<5,说明5的平方根的下限为1.5625
- 计算2.5-(2.5-1.25)/2的一半,即1.875
- 平方验证:1.875*1.875=3.515625<5,得到当前下限1.875
- …
每次得到当前值和5进行比较,并且记录下限和上限,依次迭代,逐渐逼近平方根。代码如下:
from math import sqrt
# 使用二分法计算x的平方根
def mySqrt_1(x):
# 使用math库的sqrt方法计算一个最终结果作为比较对象
base = sqrt(x)
y = x / 2.0 # 折半
low = 0.0 # 平方根的下界
up = x * 1.0 # 平方根的上届
# 当y与最终结果的误差小于0.000000001,终止循环
while abs(y - base) > 0.00000001:
# 当y*y>x,说明x的平方根的上界为y,否则下届为y
if y * y > x:
up = y
y = low + (y - low) / 2 # 向下折半压缩空间
else:
low = y
y = up - (up - y) / 2 # 向上折半压缩空间
return round(y, 8) # 保留8位小数
牛顿法
仔细思考一下就能发现,我们需要解决的问题可以从两个角度理解:
- 从函数意义上理解:我们是要求函数f(x) = x²,使f(x) = num的近似解,即x² - num = 0的 近似解。
- 从几何意义上理解:我们是要求抛物线g(x) = x² - num与x轴交点(g(x) = 0)最接近的点。
我们假设g(x0)=0,即x0是正解,那么我们要做的就是让近似解x不断逼近x0,这是函数导数的定义:
f
′
(
x
0
)
=
lim
x
→
x
0
f
(
x
)
−
f
(
x
0
)
x
−
x
0
f'(x_0)=\lim_{x\rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0}
f′(x0)=x→x0limx−x0f(x)−f(x0)
可以由此得到:
x
0
≈
x
−
f
(
x
)
f
′
(
x
0
)
x_0\approx x - \frac{f(x)}{f'(x_0)}
x0≈x−f′(x0)f(x)
对于一般的情况:
代码如下:
# 使用逐次逼近的方法,即牛顿法,原理参考高等数学第一章:微积分与导数
def mySqrt_2(x):
# 使用math库的sqrt方法计算一个最终结果作为比较对象
base = sqrt(x)
y = x / 2.0
while abs(y - base) > 0.00000001:
y = ((y * 1.0) + (1.0 * x) / y) / 2.0000
return round(y, 8)