Eclat算法
前面介绍过的Apriori算法和FP-growth算法都是从TID-项集格式(即{TID:itemset})的事务集中挖掘频繁模式,其中TID是事务标识符,而itemset是事务TID中购买的商品。这种数据格式称为水平数据格式。或者,数据也可以用项-TID集格式(即{item:TID_set})表示,其中item是项的名称,而TIDb_set是包含item的事务的标识符集合。这种格式称为垂直数据格式。
下面介绍使用垂直数据格式有效挖掘频繁项集,它是等价类变换(Equivalence CLAss Transformation,Eclat)算法的要点。
先举例说明使用垂直数据格式挖掘频繁项集。
考虑表1的事务数据库D的水平数据格式。扫描一次该数据集就可以把它转换成表2所示的垂直数据格式。
&n
Eclat算法是一种用于数据挖掘的关联规则算法,采用垂直数据格式提高效率。它通过扫描数据一次转换成垂直格式,利用先验性质构造候选项集,并通过交运算计算支持度,避免多次数据库扫描。虽然节省计算资源,但长TID集可能导致高内存需求和计算时间。
订阅专栏 解锁全文
1305

被折叠的 条评论
为什么被折叠?



