【数据挖掘】关联规则之Eclat算法

Eclat算法是一种用于数据挖掘的关联规则算法,采用垂直数据格式提高效率。它通过扫描数据一次转换成垂直格式,利用先验性质构造候选项集,并通过交运算计算支持度,避免多次数据库扫描。虽然节省计算资源,但长TID集可能导致高内存需求和计算时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Eclat算法


        前面介绍过的Apriori算法和FP-growth算法都是从TID-项集格式(即{TID:itemset})的事务集中挖掘频繁模式,其中TID是事务标识符,而itemset是事务TID中购买的商品。这种数据格式称为水平数据格式。或者,数据也可以用项-TID集格式(即{item:TID_set})表示,其中item是项的名称,而TIDb_set是包含item的事务的标识符集合。这种格式称为垂直数据格式

        下面介绍使用垂直数据格式有效挖掘频繁项集,它是等价类变换(Equivalence CLAss Transformation,Eclat)算法的要点。

        先举例说明使用垂直数据格式挖掘频繁项集。

        考虑表1的事务数据库D的水平数据格式。扫描一次该数据集就可以把它转换成表2所示的垂直数据格式。

                                                                      表1:事务数据库D的水平数据格式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值