1.1线性空间与子空间
1.1.1运算的封闭:如果数集P中的两个数做运算,其结果任然在数集P中,我们就称数集P对这个运算是封闭的。
1.1.2数域:如果数集P对加减乘除都封闭,那么将数集P称为数域。
1.1.3如果V上的元素对加法和数乘封闭,则称V为线性空间。(也就是说:如果让我们验证V是不是为线性空间,我们只需要看它是不是对加法和数乘封闭)。
1.1.4线性空间的维数与基底:维数=最大线性无关向量的个数,基底=最大线性无关的向量。(维数是一个确定的数,但是基底是n个可变的向量)
1.1.5线性子空间:如果W属于V,且W自己也是线性空间(W自己对加法和数乘封闭),则称W为V的线性子空间。
1和2条针对的是数,而345条针对的是向量。
**
1.2空间分解与维数定理
1.2.1线性空间的和:V1和V2是V的线性子空间,V1+V2就表示所以能表示成a1+a2的向量组成的集合的线性子空间。(线性空间的和要与数的并集∪做区分:线性空间如果画出来就是无限大的,无限延申的,而数的∪是一块一块的。)
1.2.2维数定理:dim(V1)+dim(V2)=dim(V1+V2)+dim(V1∩