线性空间,线性子空间,基与维数

本文介绍了线性空间的概念,包括其定义、性质和例子,如Rn、无限可微函数等。接着阐述了线性子空间的定义,并给出了一些示例。最后讨论了基和维数的定义,给出了不同线性空间的维数计算。
摘要由CSDN通过智能技术生成

集合: V V V

粗浅定义
  G.Cantor在1895年作如是界说:“集合意谓吾人感知或思想中一些确定的,并且相互区别的对象汇集而成的整体,这些对象成为该集合的元素。”
  一般地,设 P P P为某个或某些条件的集合体,记 P ( u ) : = P(u):= P(u):=元素 u u u满足性质 P P P。则集合 V V V可以表示为
V = { x : P ( x ) } V=\left\{ x:P\left( x \right) \right\} V={ x:P(x)}

性质

  1. 确定性: ∀ x ,   x ∈ V \forall x,\text{ }x\in V x, xV异或 x ∉ V x\notin V x/V
  2. 互异性:同一个集合中的元素是互不相同的。
  3. 无序性:任意改变集合中元素的排列次序,它们仍表示同一个集合。

线性空间 ( V , ⊕ , ⊗ ) \left( V,\oplus ,\otimes \right) (V,,)

定义
  线性空间是指域 ( F , + , × ) \left( \mathbb{F},+,\times \right) (F,+,×)上的一个集合 V V V,同时配备了两个二元运算 ⊕ , ⊗ \oplus ,\otimes ,
⊕ : V × V → V ( 保 证 了 加 法 运 算 封 闭 性 ) ⊗ : F × V → V ( 保 证 了 乘 法 运 算 封 闭 性 ) \begin{aligned} & \oplus :V\times V\to V (保证了加法运算封闭性)\\ & \otimes :F\times V\to V (保证了乘法运算封闭性)\\ \end{aligned} :V×VV():F×VV()
并且 ⊕ \oplus 满足:
i ) 加 法 交 换 律 : x ⊕ y = y ⊕ x ,   ∀ x , y ∈ V i i ) 加 法 结 合 律 : ( x ⊕ y ) ⊕ z = x ⊕ ( y ⊕ z ) ,   ∀ x , y , z ∈ V i i i ) 零 元 素 : ∃ 0 ∈ V ,   x ⊕ 0 = x ,   ∀ x ∈ V i v ) 可 逆 性 : ∃ ( − x ) ∈ V ,   x ⊕ ( − x ) = 0 ,   ∀ x ∈ V \begin{aligned} & i)加法交换律:x\oplus y=y\oplus x,\text{ }\forall x,y\in V \\ & ii)加法结合律:\left( x\oplus y \right)\oplus z=x\oplus \left( y\oplus z \right),\text{ }\forall x,y,z\in V \\ & iii)零元素:\exists 0\in V,\text{ }x\oplus 0=x,\text{ }\forall x\in V \\ & iv)可逆性:\exists \left( -x \right)\in V,\text{ }x\oplus \left( -x \right)=0,\text{ }\forall x\in V \\ \end{aligned} i):xy=yx, x,yVii):(xy)z=x(yz), x,y,zViii):0V, x0=x, xViv):(x)V, x(x)=0, xV
(此时 ( V , ⊕ ) \left( V,\oplus \right) (V,)就是一个阿贝尔群)

并且 ⊗ \otimes 满足:
i ) 乘 法 结 合 律 : α ⊗ ( β ⊗ x ) = ( α × β ) ⊗ x ,   ∀ α , β ∈ F ,   ∀ x ∈ V i i ) 分 配 律 一 : ( α + β ) ⊗ x = ( α ⊗ x ) ⊕ ( β ⊗ x ) ,   ∀ α , β ∈ F ,   ∀ x ∈ V i i i ) 分 配 律 二 : α ⊗ ( x ⊕ y ) = ( α ⊗ x ) ⊕ ( α ⊗ y ) ,   ∀ α ∈ F ,   ∀ x , y ∈ V i v ) 乘 法 单 位 元 : 1 ⊗ x = x ,   ∀ x ∈ V ,   1 是 域 F 中 的 单 位 元 \begin{aligned} & i)乘法结合律:\alpha \otimes \left( \beta \otimes x \right)=\left( \alpha \times \beta \right)\otimes x,\text{ }\forall \alpha ,\beta \in \mathbb{F},\text{ }\forall x\in V \\ & ii)分配律一:\left( \alpha +\beta \right)\otimes x=\left( \alpha \otimes x \right)\oplus \left( \beta \otimes x \right),\text{ }\forall \alpha ,\beta \in \mathbb{F},\text{ }\forall x\in V \\ & iii)分配律二:\alpha \otimes \left( x\oplus y \right)=\left( \alpha \otimes x \right)\oplus \left( \alpha \otimes y \right),\text{ }\forall \alpha \in \mathbb{F},\text{ }\forall x,y\in V \\ & iv)乘法单位元:1\otimes x=x,\text{ }\forall x\in V,\text{ }1是域\mathbb{F}中的单位元 \\ \end{aligned} i):α(βx)=(α×β)x, α,βF, xVii):(α+β)x=(αx)(βx), α,βF, xViii):α(xy)=(αx)(αy), αF, x,yViv):1x=x, xV, 1F
(若 V V V本身具有另一种二元运算 ⊙ \odot ( V , ⊙ ) \left( V,\odot \right) (V,)是幺半群,则此时 ( V , ⊕ , ⊙ ) \left( V,\oplus ,\odot \right) (V,,)是含幺环, ( F , ⊗ ) \left( F,\otimes \right) (F,) V V V的左 V V V– 模。)

例子

  1. V = R n V={ {\mathbb{R}}^{n}} V=Rn ∀ x = ( x 1 , x 2 , ⋯   , x n ) ,   y = ( y 1 , y 2 , ⋯   , y n ) ∈ R n \forall x=\left( { {x}_{1}},{ {x}_{2}},\cdots ,{ {x}_{n}} \right),\text{ }y=\left( { {y}_{1}},{ {y}_{2}},\cdots ,{ {y}_{n}} \right)\in { {\mathbb{R}}^{n}} x=(x1,x2,,xn), y=(y1,y2,,yn)Rn, ∀ k ∈ R \forall k\in \mathbb{R} kR,定义
    x ⊕ y : = ( x 1 + y 1 ,   x 2 + y 2 ,   ⋯   ,   x n + y n ) k ⊗ x : = ( k × x 1 ,   k × x 2 ,   ⋯   ,   k × x n ) \begin{aligned} & x\oplus y:=\left( { {x}_{1}}+{ {y}_{1}},\text{ }{ {x}_{2}}+{ {y}_{2}},\text{ }\cdots ,\text{ }{ {x}_{n}}+{ {y}_{n}} \right) \\ & k\otimes x:=\left( k\times{ {x}_{1}},\text{ }k\times{ {x}_{2}},\text{ }\cdots ,\text{ }k\times{ {x}_{n}} \right) \\ \end{aligned} xy:=(x1+y1, x2+y2, , xn+yn)kx:=(k×x1, k×x2, , k×xn)
    ( R n , ⊕ , ⊗ ) \left( { {\mathbb{R}}^{n}},\oplus,\otimes \right) (Rn,,)是域 R \mathbb{R} R上的线性空间。

  2. V = { ∑ i = 0 n a i x i : ∀ i ,   a i ∈ R } V=\left\{ \sum\limits_{i=0}^{n}{ { {a}_{i}}{ {x}^{i}}}:\forall i,\text{ }{ {a}_{i}}\in \mathbb{R} \right\} V={ i=0naixi:i, aiR} ∀ ∑ i = 0 n a i x i ,   ∑ i = 0 n b i x i ∈ V \forall \sum\limits_{i=0}^{n}{ { {a}_{i}}{ {x}^{i}}},\text{ }\sum\limits_{i=0}^{n}{ { {b}_{i}}{ {x}^{i}}}\in V i=0naixi, i=0nbixiV ∀ k ∈ R \forall k\in \mathbb{R} kR,定义
    ∑ i = 0 n a i x i ⊕ ∑ i = 0 n b i x i : = ∑ i = 0 n ( a i + b i ) x i k ⊗ ∑ i = 0 n a i x i : = ∑ i = 0 n ( k × a i ) x i \begin{aligned} & \sum\limits_{i=0}^{n}{ { {a}_{i}}{ {x}^{i}}}\oplus \sum\limits_{i=0}^{n}{ { {b}_{i}}{ {x}^{i}}}:=\sum\limits_{i=0}^{n}{\left( { {a}_{i}}+{ {b}_{i}} \right){ {x}^{i}}} \\ & k\otimes \sum\limits_{i=0}^{n}{ { {a}_{i}}{ {x}^{i}}}:=\sum\limits_{i=0}^{n}{\left( k\times { {a}_{i}} \right){ {x}^{i}}} \\ \end{aligned} i=0naixii=0nbixi:=i=0n(ai+bi)xiki=0naixi:=i=0n(k×ai)xi
    ( V , ⊕ , ⊗ ) \left( V,\oplus,\otimes \right) (V,,)是域 R \mathbb{R} R上的线性空间。

  3. V = M m , n ( C ) V={ {M}_{m,n}}\left( \mathbb{C} \right) V=Mm,n(C)表示复数域 C \mathbb{C} C上的 m × n m\times n m×n阶矩阵全体, ∀ A = ( a i j ) m × n , B = ( b i j ) m × n ∈ V ,   ∀ k ∈ C \forall A={ {\left( { {a}_{ij}} \right)}_{m\times n}},B={ {\left( { {b}_{ij}} \right)}_{m\times n}}\in V,\text{ }\forall k\in \mathbb{C} A=(aij)m×n,B=(bij)m×nV, kC,定义
    A ⊕ B : = ( a i j + b i j ) m × n k ⊗ A : = ( k × a i j ) m × n \begin{aligned} & A\oplus B:={ {\left( { {a}_{ij}}+{ {b}_{ij}} \right)}_{m\times n}} \\ & k\otimes A:={ {\left( k\times{ {a}_{ij}} \right)}_{m\times n}} \\ \end{aligned} AB:=(aij+bij)m×nkA:=(k×aij)m×n
    ( M m , n ( C ) , ⊕ , ⊗ ) \left( { {M}_{m,n}}\left( \mathbb{C} \right),\oplus,\otimes \right) (Mm,n(C),,)是域 C \mathbb{C} C上的一个线性空间。

  4. V = C ∞ [ a , b ] V={ {C}^{\infty }}\left[ a,b \right] V=C[a,b]表示在闭区间 [ a , b ] \left[ a,b \right] [a,b]上无限次可微的函数的全体, ∀ f , g ∈ V ,   ∀ k ∈ R \forall f,g\in V,\text{ }\forall k\in \mathbb{R} f,gV, kR,定义
    ( f ⊕ g ) ( x ) : = f ( x ) + g ( x ) ( k ⊗ f ) ( x ) : = k × f ( x ) ∀ x ∈ [ a , b ] \begin{aligned} & \left( f\oplus g \right)\left( x \right):=f\left( x \right)+g\left( x \right) \\ & \left( k\otimes f \right)\left( x \right):=k\times f\left( x \right) \\ & \forall x \in [a,b] \\ \end{aligned} (fg)(x):=f(x)+g(x)(kf)(x):=k×f(x)x[a,b]
    ( C ∞ [ a , b ] , ⊕ , ⊗ ) \left( { {C}^{\infty }}\left[ a,b \right],\oplus ,\otimes \right) (C[a,b],,)是一个域 R \mathbb{R} R上的线性空间。

  5. V = l p = { { x j } : ∀ j ,   x j ∈ R ;   ∑ j = 1 ∞ ∣ x j ∣ p < ∞ } ( p > 0 ) V={ {l}^{p}}=\left\{ \left\{ { {x}_{j}} \right\}:\forall j,\text{ }{ {x}_{j}}\in \mathbb{R};\text{ }\sum\limits_{j=1}^{\infty }{ { {\left| { {x}_{j}} \right|}^{p}}}<\infty \right\}\left( p>0 \right) V=lp={ { xj}:j, xjR; j=1xjp<}(p>0), ∀ x = { x j } ,   y = { y j } ∈ V ,   ∀ k ∈ R \forall x=\left\{ { {x}_{j}} \right\},\text{ }y=\left\{ { {y}_{j}} \right\}\in V,\text{ }\forall k\in \mathbb{R} x={ xj}, y={ yj}V, kR, 定义
    x ⊕ y : = { x j + y j } k ⊗ x : = { k × x j } \begin{aligned} & x\oplus y:=\left\{ { {x}_{j}}+{ {y}_{j}} \right\} \\ & k\otimes x:=\left\{ k\times { {x}_{j}} \right\} \\ \end{aligned} xy:={ xj+yj}kx:={ k×xj}
    ( l p , ⊕ , ⊗ ) \left( { {l}^{p}},\oplus ,\otimes \right) (

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值