零.引入
上述例子促使我们抓住其共同特点抽象出1个数学模型:线性空间,这是线性代数研究的主要对象之一
注1: ①几何空间是元素是"点"的向量空间,但点可以被表示为以O为起点的向量,因此其元素也可以认为是以O为起点的向量 ②几何空间通常是指3维的
注2:上例1是点(或以O为起点向量)的集合,称为几何空间;上例2即向量空间;上例3是矩阵的集合,称为矩阵空间;上例4是多项式的集合,称为多项式空间;上例5是连续函数的集合,称为函数空间
一.域F上的线性空间(8.1)
1.线性空间:
(1)笛卡儿积与代数运算:
(2)定义:
注1:向量空间在线性空间的基础上进一步要求集合中的元素均为向量,因此向量空间是1种特殊的线性空间
但借助几何语言,其他线性空间中的元素也可以称为向量(或者说,被表示为向量),因此,线性空间又可称为向量空间;为避免混淆,有些书上不区分"线性空间"和"向量空间",直接统称为"向量空间"
注2:习惯上把线性空间V的加法运算以及域F的元素与V的元素间的纯量乘法运算说成是V的加法运算与纯量乘法运算,统称为V的线性运算
(3)线性空间的实例:
(4)线性空间的性质:
性质1:V中的零元是唯一的
性质2:V中每个元素α的负元是唯一的,记作-α
利用负元,可在V中定义减法如下: α − β : = α + ( − β ) α-β:=α+(-β) α−β:=α+(−β)(":=“的意思是"定义为”)
性质3:对∀α∈V,0α=0
形状4:对∀k∈F,k0=0
性质5:如果kα=0,则k=0或α=0
性质6:对∀α∈V,(-1)α=-α
2.向量集与向量组
(1)线性组合与线性表出:
(2)线性相关与线性无关:
命题1:在域F上的线性空间V中,如果向量组的1个部分组线性相关,则该向量组线性相关
命题2:在域F上的线性空间V中,包含0向量的向量集线性相关
命题3:在域F上的线性空间V中,元素个数>1的向量集W线性相关当且仅当W中至少有1个向量可以由其余向量中的有限多个线性表出,从而W线性无关当且仅当W中每1个向量都不能由其余向量中的有限多个线性表出
命题4:在域F上的线性空间V中,设向量β可由向量集W线性表出,则表示方法唯一的充要条件是:向量集W线性无关
(3)线性表出的判定:
命题5:在域F上的线性空间V中,设向量组 α 1 . . . α s α_1...α_s α1...αs线性无关,则向量β可由向量组 α 1 . . . α s α_1...α_s α1...αs线性表出的充要条件是: α 1 . . . α s , β α_1...α_s,β α1...αs,β线性相关
(4)极大线性无关组(又称最大线性无关组)
(5)向量组等价:
引理1:在域F上的线性空间V中,设向量组 β 1 . . . β r β_1...β_r β1...βr可由向量组 α 1 . . . α s α_1...α_s α1...αs线性表出,如果r>s,则向量组 β 1 . . . β r β_1...β_r β1...βr线性相关
推论1(引理1的逆否命题):在域F上的线性空间V中,设向量组 β 1 . . . β r β_1...β_r β1...βr可由向量组 α 1 . . . α s α_1...α_s α1...αs线性表出,如果向量组 β 1 . . . β r β_1...β_r β1...βr线性无关,则 r ≤ s r≤s r≤s
推论2:等价的线性无关的向量组所含向量的个数相等
推论3:1个向量组的任意2跟极大线性无关组所含向量的个数相等
(6)向量组的秩:
命题6:在域F上的线性空间V中,向量组 α 1 . . . α s α_1...α_s α1...αs线性无关的充要条件是: r a n k α 1 . . . α s = s rank{α_1...α_s}=s rankα1...αs=s
命题7:如果向量组 α 1 . . . α s α_1...α_s α1...αs可由向量组 β 1 . . . β r β_1...β_r β1...βr线性表出,则 r a n k α 1 . . . α s ≤ r a n k β 1 . . . β r rank{α_1...α_s}≤rank{β_1...β_r} rankα1...αs≤rankβ1...βr
命题8:等价的向量组有相等的秩
3.基与维数
(1)基与坐标:
对线性空间V,只要知道其1个基,那么V的结构就完全清楚了
所以其实 ( 1 , 0 , 0... ) , ( 0 , 1 , 0... ) , ( 0 , 0 , 1... ) . . . (1,0,0...),(0,1,0...),(0,0,1...)... (1,0,0...),(0,1,0...),(0,0,1...)...不是 R ∞ = { ( a 1 , a 2 . . . ) ∣ a i ∈ R , i = 1 , 2... } R^\infty=\{(a_1,a_2...)|a_i∈R,i=1,2...\} R∞={(a1,a2...)∣ai∈R,i=1,2...}的1个基;但是 ( 1 , 0 , 0...0 ) , ( 0 , 1 , 0...0 ) , ( 0 , 0 , 1...0 ) . . . ( 0 , 0 , 0...1 ) (1,0,0...0),(0,1,0...0),(0,0,1...0)...(0,0,0...1) (1,0,0...0),(0,1,0...0),(0,0,1...0)...(0,0,0...1)是 R n = { ( a 1 . . . a n ) ∣ a i ∈ R , i = 1 , 2... n } ( n ∈ N + ) R^n=\{(a_1...a_n)|a_i∈R,i=1,2...n\}(n∈N_+) Rn={(a1...an)∣ai∈R,i=1,2...n}(n∈N+)的1个基
坐标:
(2)偏序集:
(3)任一线性空间都存在1个基:
Zorn引理:若偏序集S的每条链都有上界,则S有1个极大元素
定理1:任一域F上的任一线性空间V都有1个基
(4)有限维的线性空间和无限维的线性空间:
定理2:如果域F上的线性空间V是有限维的,则V的∀2个基所含向量的个数相等
推论:如果域F上的线性空间V是无限维的,则V的∀1个基都含有无穷多个向量
(5)维数:
对有限维的线性空间V,其维数对研究其结构有重要作用
(6)n维线性空间的性质:
命题9:设V是域F上的n维线性空间,则V中∀n+1个向量都线性相关
命题10:设V是域F上的n维线性空间,则V中∀n个线性无关的向量都是V的1个基
命题11:设V是域F上的n维线性空间,如果V中的每个向量都可由向量组 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn线性表出,则 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn是V的1个基
命题12:设V是域F上的n维线性空间,则V中∀1个线性无关的向量组都可以扩充成V的1个基
4.基变换和坐标变换
(1)向量组相等和向量组的线性运算:
(2)过渡矩阵与基变换:
过渡矩阵:
命题13:设 α 1 . . . α n α_1...α_n α1...αn是线性空间V的1个基,且向量组 β 1 . . . β n β_1...β_n β1...βn满足: ( β 1 , β 2 . . . β n ) = ( α 1 , α 2 . . . α n ) A (β_1,β_2...β_n)=(α_1,α_2...α_n)A (β1,β2...βn)=(α1,α2...αn)A则 β 1 . . . β n β_1...β_n β1...βn是V的1个基当且仅当A是可逆矩阵
(4)坐标变换:
二.子空间(8.2)
1.线性子空间
(1)定义:
(2)判定:
定理3:设U是域F上线性空间V的1个非空子集,则U是V的1个子空间的充要条件是:U对V的加法好数量乘法都封闭,即: α , β ∈ U ⇒ α + β ∈ U α ∈ U , k ∈ F ⇒ k α ∈ U α,β∈U⇒α+β∈U\\ α∈U,k∈F⇒kα∈U α,β∈U⇒α+β∈Uα∈U,k∈F⇒kα∈U
根据该定理,判定V的1个子集是V的1个子空间,需要验证3条:①U非空集②U对加法封闭②U对数量乘法封闭
显然,{0},V都是V的子空间,称它们为V的平凡子空间;{0}称为V的零子空间,记为0
(3)子空间的基与维数:
2.子空间的交与和
为了利用线性空间V的若干个子空间来构筑整个空间V,需要引进子空间的运算
(1)子空间的交:
定理4:设 V 1 , V 2 V_1,V_2 V1,V2都是域 F F F上线性空间 V V V的子空间,则 V 1 ∩ V 2 V_1∩V_2 V1∩V2也是V的子空间,即"交"是子空间的运算
由集合的交的定义可知,子空间的交满足以下运算法则:
①交换律: V 1 ∩ V 2 = V 2 ∩ V 1 V_1∩V_2=V_2∩V_1 V1∩V2=V2∩V1
②结合律: ( V 1 ∩ V 2 ) ∩ V 3 = V 1 ∩ ( V 2 ∩ V 3 ) (V_1∩V_2)∩V_3=V_1∩(V_2∩V_3) (V1∩V2)∩V3=V1∩(V2∩V3)
多个子空间的交:
(2)子空间的并:
设 V 1 , V 2 V_1,V_2 V1,V2都是域 F F F上线性空间 V V V的子空间,则 V 1 ∪ V 2 V_1∪V_2 V1∪V2不是V的子空间,即"并"不是子空间的运算
(3)子空间的和:
定理5:设 V 1 , V 2 V_1,V_2 V1,V2都是域 F F F上线性空间 V V V的子空间,则 V 1 + V 2 V_1+V_2 V1+V2也是V的子空间,即"和"是子空间的运算
从以上论述可知: V 1 + V 2 V_1+V_2 V1+V2是包含 V 1 ∪ V 2 V_1∪V_2 V1∪V2的最小子空间
从(6)式易看出,子空间的和满足以下运算法则:
①交换律: V 1 + V 2 = V 2 + V 1 V_1+V_2=V_2+V_1 V1+V2=V2+V1
②结合律: ( V 1 + V 2 ) + V 3 = V 1 + ( V 2 + V 3 ) (V_1+V_2)+V_3=V_1+(V_2+V_3) (V1+V2)+V3=V1+(V2+V3)
多个子空间的和:
(4)交与和的分配律:
命题1:设 V 1 , V 2 , V V_1,V_2,V V1,V2,V都是域 F F F上线性空间 V V V的子空间,则: V 1 ∩ ( V 2 + V 3 ) ⊇ ( V 1 ∩ V 2 ) + ( V 1 ∩ V 3 ) V 1 + ( V 2 ∩ V 3 ) ⊆ ( V 1 + V 2 ) ∩ ( V 1 + V 3 ) V_1∩(V_2+V_3)\supe(V_1∩V_2)+(V_1∩V_3)\\V_1+(V_2∩V_3)\sube(V_1+V_2)∩(V_1+V_3) V1∩(V2+V3)⊇(V1∩V2)+(V1∩V3)V1+(V2∩V3)⊆(V1+V2)∩(V1+V3)
(5)向量组的和:
命题2:设 α 1 . . α s α_1..α_s α1..αs和 β 1 . . . β t β_1...β_t β1...βt是域F上线性空间V的2个向量组,则: < α 1 . . α s > + < β 1 . . . β t > = < α 1 . . α s , β 1 . . . β t > <α_1..α_s>+<β_1...β_t>\\=<α_1..α_s,β_1...β_t>\qquad\quad\:\:\: <α1..αs>+<β1...βt>=<α1..αs,β1...βt>
(6)子空间的维数公式:
定理6:设 V 1 , V 2 V_1,V_2 V1,V2都是域F上线性空间V的有限维子空间,则 V 1 ∩ V 2 , V 1 + V 2 V_1∩V_2,V_1+V_2 V1∩V2,V1+V2也是有限维的,且 d i m V 1 + d i m V 2 = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) ( 12 ) dim\,V_1+dim\,V_2=dim(V_1+V_2)+dim(V_1∩V_2)\qquad(12) dimV1+dimV2=dim(V1+V2)+dim(V1∩V2)(12)
推论:设 V 1 , V 2 V_1,V_2 V1,V2都是域F上线性空间V的有限维子空间,则 d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 ⇔ V 1 ∩ V 2 = 0 dim(V_1+V_2)=dim\,V_1+dim\,V_2⇔V_1∩V_2=0 dim(V1+V2)=dimV1+dimV2⇔V1∩V2=0
3.子空间的直和
(1)定义:
2个子空间的直和:
多个子空间的直和:
(2)直和的判定:
2个子空间的直和的判定
定理7:设 V 1 , V 2 V_1,V_2 V1,V2都是域F上线性空间V的子空间(可以是无限维的),则下列命题相互等价:
① V 1 + V 2 V_1+V_2 V1+V2是直和
② V 1 + V 2 V_1+V_2 V1+V2中零向量的表法唯一(即若 α 1 + α 2 = 0 α_1+α_2=0 α1+α2=0,则 α 1 = α 2 = 0 α_1=α_2=0 α1=α2=0)
③ V 1 ∩ V 2 = 0 V_1∩V_2=0 V1∩V2=0
定理7’:设 V 1 , V 2 V_1,V_2 V1,V2都是域F上线性空间V的有限维子空间,则下列命题相互等价:
① V 1 + V 2 V_1+V_2 V1+V2是直和
④ d i m ( V 1 + V 2 ) = d i m V 1 + d i m V 2 dim(V_1+V_2)=dim\,V_1+dim\,V_2 dim(V1+V2)=dimV1+dimV2
⑤ V 1 V_1 V1的1个基与 V 2 V_2 V2的1个基合起来是 V 1 + V 2 V_1+V_2 V1+V2的1个基
定理7’’:设 V 1 , V 2 V_1,V_2 V1,V2都是域F上线性空间V的子空间(可以是无限维的),则下列命题相互等价:
① V 1 + V 2 V_1+V_2 V1+V2是直和
⑤ V 1 V_1 V1的1个基与 V 2 V_2 V2的1个基合起来是 V 1 + V 2 V_1+V_2 V1+V2的1个基
多个子空间的直和的判定:
定理8:设 V 1 , V 2 . . . V s V_1,V_2...V_s V1,V2...Vs都是域F上线性空间V的子空间,则下列命题等价:
① ∑ i = 1 s V i \displaystyle\sum_{i=1}^sV_i i=1∑sVi是直和
② ∑ i = 1 s V i \displaystyle\sum_{i=1}^sV_i i=1∑sVi中零向量的表法唯一
③ V i ∩ ( ∑ j ≠ i V j ) ( i = 1 , 2... s ) V_i∩(\displaystyle\sum_{j≠i}V_j)\,(i=1,2...s) Vi∩(j=i∑Vj)(i=1,2...s)
定理8’:设 V 1 , V 2 . . . V s V_1,V_2...V_s V1,V2...Vs都是域F上线性空间V的有限维子空间,则下列命题等价:
① ∑ i = 1 s V i \displaystyle\sum_{i=1}^sV_i i=1∑sVi是直和
④ d i m ( ∑ i = 1 s V i ) = ∑ i = 1 s ( d i m V i ) dim(\displaystyle\sum_{i=1}^sV_i)=\displaystyle\sum_{i=1}^s(dim\,V_i) dim(i=1∑sVi)=i=1∑s(dimVi)
⑤若 S 1 S_1 S1是 V 1 V_1 V1的1个基, S 2 S_2 S2是 V 2 V_2 V2的1个基… S s S_s Ss是 V s V_s Vs的1个基,则 ∪ i = 1 s S i ∪_{i=1}^sS_i ∪i=1sSi是 ∑ i = 1 s V i \displaystyle\sum_{i=1}^sV_i i=1∑sVi的1个基
(3)补空间:
命题3:设V是域F上的n维线性空间,则V的每个子空间U都有补空间
命题3’:域F上无限维线性空间V的任一子空间U都有补空间