运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
进阶:
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
链表的优势在于对一个结点的删除或者加入,缺点是不好查找。
哈希Map的优势在于查找快.缺点是数据没有顺序。我们可以把它们两个结点起来
当然已经有这种数组结构了就是LinkedHashMap,我们学习编程不能直接就拿来用吧。还是基于上一层来实现本层的结构。
我们get put一个对象,都应该放到map里面去
每次get,我们在map里面找,找到就保存这个key的返回,然后再双向链表中删除再在头上加入。为什么是双向链表呢,因为我们在hashmap中返回的直接是一个结点,我们需要删除然后链接它的前后顺序就只能用双向链表(单项链表就是要从头开始找,再操作,时间复杂度就是O(n))。我们get一次就是多访问了一次,那么在链表中删除它,再把它加到最前面去就造成了一种访问的前后关系。
每次put,要注意是否已经达到了capacity。达到就删除链表的末尾(当前最远访问过的,注意在map中删去它,免得多占了空间)在加上本次put的值构成的node,put也是一种访问,本次的size不改变。否则就直接加上结点,szie++
我们的结构充分利用了两者的优势,用map的随机访问弥补了链表需要从头开始遍历。又借助链表的顺序性某种意义上将map中的结点线性的排列。
import java.util.*;
class LRUCache {
DoubleLinkedList list;
Map<Integer,Node> map;
//容量
int capacity;
//元素个数
int size=0;
public LRUCache(int capacity) {
list=new DoubleLinkedList();
map=new HashMap<>();
this.capacity=capacity;
}
public int get(int key) {
if(map.containsKey(key)) {
//取出来
Node node=map.get(key);
//在链表里面删除在加到前面去,起到前移的作用
list.remove(node);
list.addFirst(node);
return node.val;
}
else
return -1;
}
public void put(int key, int value) {
Node node=new Node(key,value);
if(map.containsKey(key)) {
//新建的结点
//删除原来的,加上新的放在前面
list.remove(map.get(key));
list.addFirst(node);
//更新map里面的映射
map.put(key,node);
}
else {
//满了
if(size==capacity) {
//删去最后一个,还有map里面
Node t=list.removeLast();
map.remove(t.key);
}
else
size++;
map.put(key,node);
list.addFirst(node);
}
}
}
class Node{
int key;
int val;
Node pre;
Node next;
public Node(int key,int val) {this.key=key;this.val=val;}
}
class DoubleLinkedList{
Node head;
Node tail;
int size;
public DoubleLinkedList() {
//两个首尾的占空结点
head=new Node(0,0);
tail=new Node(0,0);
head.next=tail;
tail.pre=head;
}
public void remove(Node node) {
node.pre.next=node.next;
node.next.pre=node.pre;
// Node p=node.pre;
// Node n=node.next;
// p.next=n;
// n.pre=p;
}
public Node removeLast() {
//空表
if(size==0)
return null;
Node ret=tail.pre;
remove(ret);
return ret;
}
public void addFirst(Node node) {
node.next=head.next;
head.next.pre=node;
node.pre=head;
head.next=node;
// Node t=head.next;
// node.next=t;
// t.pre=node;
// node.pre=head;
// head.next=node;
size++;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/