2020年5月份的时候曾经投过腾讯的数据分析实习,中午投的简历,午觉睡醒就被call,没有HR通知,南山必胜客直接就来技术面。当时准备的还不够充分,半小时后就感谢充值了,不过里面有一道题倒是想在今天拿来说一说,也和我的近期实习相关联。
问题由腾讯面试官所在组的业务问题引入,具体的内容记不清了,但主要问的是RFM模型和聚类的融合。抽象表达一下就是:某个业务场景,简化为RFM模型,基于RFM模型的指标结构,做聚类,完成用户分群。
先简要介绍一下RFM模型吧。RFM模型是由美国数据库营销研究所的Arthur Hughes提出的基于网店客户消费行为数据的一种客户细分方法,即将最近一次消费(Regency),消费频率(Frequency)和消费金额(Monetary)作为重要的指标来分析和细分客户:
(1)最近一次消费(Regency):是指在客户多次消费中,距离上一次消费的时间。理论上客户距离上一次消费的时间越近越好,营销者可以由此衡量出消费者的忠诚度;
(2)消费频率(Frequency):是指消费者在某一段时间内的购买次数。根据此指标,最常购买的客户,忠诚度就最高;
(3)消费金额(Monetary):是指在客户在一定时间内购买产品的总金额。在一段时间内客户的购买金额总和越高,表明该客户为企业创造的价值就越大。
简单来看,只要把指标抽象成类似上述的R、F和M三个&#x