聚类与RFM模型 —— 从5月的一道腾讯数据分析面试题说起

本文介绍了RFM模型在数据分析中的应用,特别是在腾讯面试中的一个实际问题。通过RFM(最近一次消费、消费频率、消费金额)模型进行用户分群,然后探讨了如何结合聚类算法进行数据处理。文章提到了数据标准化和降维作为解决数据集中问题的思路,同时提出了“先分类再聚类”的方法,利用kmodes聚类算法处理分类数据,以优化聚类效果。
摘要由CSDN通过智能技术生成

2020年5月份的时候曾经投过腾讯的数据分析实习,中午投的简历,午觉睡醒就被call,没有HR通知,南山必胜客直接就来技术面。当时准备的还不够充分,半小时后就感谢充值了,不过里面有一道题倒是想在今天拿来说一说,也和我的近期实习相关联。

问题由腾讯面试官所在组的业务问题引入,具体的内容记不清了,但主要问的是RFM模型和聚类的融合。抽象表达一下就是:某个业务场景,简化为RFM模型,基于RFM模型的指标结构,做聚类,完成用户分群。

先简要介绍一下RFM模型吧。RFM模型是由美国数据库营销研究所的Arthur Hughes提出的基于网店客户消费行为数据的一种客户细分方法,即将最近一次消费(Regency),消费频率(Frequency)和消费金额(Monetary)作为重要的指标来分析和细分客户:

(1)最近一次消费(Regency):是指在客户多次消费中,距离上一次消费的时间。理论上客户距离上一次消费的时间越近越好,营销者可以由此衡量出消费者的忠诚度;

(2)消费频率(Frequency):是指消费者在某一段时间内的购买次数。根据此指标,最常购买的客户,忠诚度就最高;

(3)消费金额(Monetary):是指在客户在一定时间内购买产品的总金额。在一段时间内客户的购买金额总和越高,表明该客户为企业创造的价值就越大。

简单来看,只要把指标抽象成类似上述的R、F和M三个&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稀饭居然不在家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值