GMOT-40: A Benchmark for Generic Multiple Object Tracking速读笔记

(一)Title

在这里插入图片描述
前言: 这篇文章中提到GMOT和MOT并不是相同的内容,因此,这篇文章并不是关注的重点。
代码: https://github.com/Spritea/GMOT40

(二)Keypoints

问题:

现有的研究需要跟踪目标(比如行人)的先验知识,不能很好地推广到未见过的类别上(这个问题让我感到很迷惑,不知道下面introduction有没有介绍)。而General Multiple Object Tracking(GMOT)需要很少的关于目标的先验信息(这里的第二个疑问就是GMOT和MOT有什么区别嘛?)

本文的工作:

  • first public dense GMOT dataset,采用两种tracking protocols来评估不同跟踪算法的特性。
  • 构建了GMOT的一系列baseline。
  • 使用常用的MOT算法(经过改动)对GMOT-40进行评估

(四)Notes

4.1 MOT算法

  • model-based 方法

    用一个category-aware的detector来生成候选框,tracker用来求解data association问题。
    相似性估计的方法

    • 匈牙利算法
    • network flow
    • graph multicur
    • multi-dimensional assignment
    • multi hypotheses tracking
    • 利用deep neural networks来解决数据关联(data association)的问题

    这类方法可以自动处理目标的进入和退出事件,主要用于行人和车辆跟踪,越来越流行利用ReID的数据集或者pose estimation的数据集来改善association的鲁棒性

  • model-free 方法

    主要解决单目标跟踪问题,第一帧只给出一个目标边界框,tracker并不知道目标的类别先验,将model-free的思想扩展到MOT是一个新兴的课题

  • MOT的benchmarks

    • PETS benchmark,单个摄像头的3个序列,进行行人跟踪
    • KITTI包含了行人和车辆两个类别
    • Socially-aware large-scale crowd forecasting,进行行人跟踪
    • UA-DETRAC进行车辆跟踪
    • MOT15,行人和车辆,共22个序列
    • MOT16,行人和车辆,共14个序列
    • VisDrone,行人和车辆,共96个序列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值