(一)Title
前言: 这篇文章中提到GMOT和MOT并不是相同的内容,因此,这篇文章并不是关注的重点。
代码: https://github.com/Spritea/GMOT40
(二)Keypoints
问题:
现有的研究需要跟踪目标(比如行人)的先验知识,不能很好地推广到未见过的类别上(这个问题让我感到很迷惑,不知道下面introduction有没有介绍)。而General Multiple Object Tracking(GMOT)需要很少的关于目标的先验信息(这里的第二个疑问就是GMOT和MOT有什么区别嘛?)
本文的工作:
- first public dense GMOT dataset,采用两种tracking protocols来评估不同跟踪算法的特性。
- 构建了GMOT的一系列baseline。
- 使用常用的MOT算法(经过改动)对GMOT-40进行评估
(四)Notes
4.1 MOT算法
-
model-based 方法
用一个category-aware的detector来生成候选框,tracker用来求解data association问题。
相似性估计的方法:- 匈牙利算法
- network flow
- graph multicur
- multi-dimensional assignment
- multi hypotheses tracking
- 利用deep neural networks来解决数据关联(data association)的问题
这类方法可以自动处理目标的进入和退出事件,主要用于行人和车辆跟踪,越来越流行利用ReID的数据集或者pose estimation的数据集来改善association的鲁棒性
-
model-free 方法
主要解决单目标跟踪问题,第一帧只给出一个目标边界框,tracker并不知道目标的类别先验,将model-free的思想扩展到MOT是一个新兴的课题
-
MOT的benchmarks
- PETS benchmark,单个摄像头的3个序列,进行行人跟踪
- KITTI包含了行人和车辆两个类别
- Socially-aware large-scale crowd forecasting,进行行人跟踪
- UA-DETRAC进行车辆跟踪
- MOT15,行人和车辆,共22个序列
- MOT16,行人和车辆,共14个序列
- VisDrone,行人和车辆,共96个序列