detectron2使用总结 |使用detectron2构造 Faster RCNN 和 Mask RCNN 进行目标检测

模型的初始化

detectron2中模型的结构由 cfg 参数决定,而 cfg 的内容来自 configs 中的配置文件。

cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml"))

meta_arch = cfg.MODEL.META_ARCHITECTURE 得到的是一个网络模型的类名。
构造过程调用的函数依次为 build_model(cfg) -> meta_arch这个类的 from_config(cls, cfg) 函数 -> meta_arch这个类的 __init__() 函数。其中,from_config 函数的返回值将传递给 __init__ 函数。

  meta_arch = cfg.MODEL.META_ARCHITECTURE
  model =<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值