【SEM】1 基本概念

结构方程模型(SEM)是一种统计方法,用于检验潜变量与观测变量的关系。SEM涉及测量模型和结构模型,研究观测变量的测量精度和潜变量之间的因果关系。LISREL软件常用于模型构建、估计和评估。SEM理论模型包括单个潜变量对应多个观测变量、潜变量的因果关系和关联关系等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【SEM】1 基本概念

2018-2020结构方程笔记整理
资料by扬帆老师

(1)结构方程概述

结构方程(SEM, Structual Equation modeling)是一种检验潜变量和观测变量之间关系的假设的统计方法。

SEM框架下主要处理的两类变量:观测变量(observed variable)、潜变量(latent variable)

常见的观测变量:测试的分数、问卷的回答、其他数值材料……

常见的潜变量:
心理学——智力、抑郁、自尊心、饮酒行为、感受
社会学——社会阶层、职业期待、抱负、歧视
经济——经济预期、妇女赋权
商业——顾客满意度、顾客忠诚度
政治科学——工业发展程度、政治影响力

SEM可以:
1、研究测量值(measure)、被测量值之间的区别
2、研究潜变量,以及潜变量之间的关系
3、评价关于潜变量以及其测量值的理论模型
4、 对因果关系(causal relation)建模,以预测在一个复杂系统中,干预(interventions)如何产生影响

(2)图表语法

图形 含义
椭圆 潜变量、未观测到的变量
矩形 观测变量
连接两个变量的一个、单向、直箭头 因果关系,箭头尾导致箭头尖
连接两个变量的两个、单向、直箭头 反馈关系( feedback relation)或互为因果关系
连接两个变量的一个、双向、弯箭头 关联关系

(3)主要模型及符号含义

1、测量模型

x = λ x ξ + δ y = λ y η + ϵ x = \lambda_x\xi + \delta \\ y = \lambda_y\eta + \epsilon x=λxξ+δy=λyη+ϵ
假设 E ( ξ ) = 0 , E ( η ) = 0 , E ( δ ) = 0 , E ( ϵ ) = 0 E(\xi)=0,E(\eta) = 0,E(\delta)=0,E(\epsilon)=0 E(ξ)=0,E(η)=0,E(δ)=0,E(ϵ)=0,且 ϵ ≠ δ ≠ ξ , η \epsilon \neq \delta \neq \xi, \eta ϵ=δ=ξ,η

方程中符号具体含义如下表
测量模型
主要研究:观察变量x能否准确测量潜变量 ξ \xi ξ,每个xi的可信度(应做“系数大小”理解?)

例子:
在这里插入图片描述

2、结构模型
η = B η + Γ ξ + ζ \eta = B\eta+\Gamma\xi+\zeta η=Bη+Γξ+ζ
假设 E ( η ) = 0 , E ( ξ ) = 0 , E ( ζ ) = 0 E(\eta)=0,E(\xi) = 0,E(\zeta)=0 E(η)=0,E(ξ)=0,E(ζ)=0,且 ζ , ξ \zeta ,\xi ζ,ξ不相关, ( I − B ) (I-B) (IB)是非奇异阵
方程中符号具体含义如下表
结构模型
主要研究:潜变量间的因果关系及其大小

例子:
structural

latent endogenous variables-内生潜变量
latent exogenous variables-外生潜变量

(4)典型理论模型

1、一个潜变量对应一个观测变量
一个结构变量对应一个观测变量
2、一个潜变量对应多个观测变量
一个结构变量对应多个观测变量
3、潜变量之间存在因果关系
结构变量之间存在因果关系
4、潜变量之间存在关联关系
结构变量之间存在关联关系

例:“教育成就与期待模型”(Educational Achievement and Aspirations Model)的路径图(path diagram)
在这里插入图片描述

(5)关键环节

1、相关理论

  • 概念
  • 结构
  • 形式化(Formalization)

2、基本问题

  • 因果关系
  • 模型构建:理论驱动or数据驱动
  • 探索性分析or验证性分析
  • 测量单位、标准化
  • 尺度类型(Scale types)

3、统计相关问题

  • 模型的规范化
  • 模型和参数的识别
  • 模型和参数的估计
  • 模型的拟合和检验:评估拟合效果、检测未拟合部分(Detection of lack of fit)
  • 检验关于结构的假设

4、计算相关问题

例子:计划行为理论(TPB)

  • 理论模型
    TPB
  • Path diagram
    TPB

(6)软件:LISREL

LISREL主要用于:

  • 模型构建
  • 精确估计和评估拟合效果
  • 拟合和测试许多标准和非标准模型(non-standard models)

PRELIS主要用于:

  • 处理数据:筛选、探索、摘要
  • 计算:协方差矩阵、相关矩阵、动量矩阵(Moment matrix)、渐近协方差矩阵

(7)协方差代数

基本假设: H 0 : Σ = Σ ( θ ) H_0:\Sigma = \Sigma(\theta) H0:Σ=Σ(θ)

目的:选择合适的参数θ,使 Σ ( θ ) \Sigma(\theta) Σ(θ)和样本协方差矩阵S尽量接近

Σ \Sigma Σ:方程中观测变量一侧对应的协方差阵,下三角
θ \theta θ:观测变量对应的向量
Σ ( θ ) \Sigma(\theta) Σ(θ):方程中潜变量一侧对应的协方差阵,下三角

例子:简单回归 y = γ x + z y=\gamma x+z y=γx+z
简单回归
Σ = ( v a r ( y ) c o v ( x , y )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值