【SEM】1 基本概念
2018-2020结构方程笔记整理
资料by扬帆老师
(1)结构方程概述
结构方程(SEM, Structual Equation modeling)是一种检验潜变量和观测变量之间关系的假设的统计方法。
SEM框架下主要处理的两类变量:观测变量(observed variable)、潜变量(latent variable)
常见的观测变量:测试的分数、问卷的回答、其他数值材料……
常见的潜变量:
心理学——智力、抑郁、自尊心、饮酒行为、感受
社会学——社会阶层、职业期待、抱负、歧视
经济——经济预期、妇女赋权
商业——顾客满意度、顾客忠诚度
政治科学——工业发展程度、政治影响力
SEM可以:
1、研究测量值(measure)、被测量值之间的区别
2、研究潜变量,以及潜变量之间的关系
3、评价关于潜变量以及其测量值的理论模型
4、 对因果关系(causal relation)建模,以预测在一个复杂系统中,干预(interventions)如何产生影响
(2)图表语法
图形 | 含义 |
---|---|
椭圆 | 潜变量、未观测到的变量 |
矩形 | 观测变量 |
连接两个变量的一个、单向、直箭头 | 因果关系,箭头尾导致箭头尖 |
连接两个变量的两个、单向、直箭头 | 反馈关系( feedback relation)或互为因果关系 |
连接两个变量的一个、双向、弯箭头 | 关联关系 |
(3)主要模型及符号含义
1、测量模型
x = λ x ξ + δ y = λ y η + ϵ x = \lambda_x\xi + \delta \\ y = \lambda_y\eta + \epsilon x=λxξ+δy=λyη+ϵ
假设 E ( ξ ) = 0 , E ( η ) = 0 , E ( δ ) = 0 , E ( ϵ ) = 0 E(\xi)=0,E(\eta) = 0,E(\delta)=0,E(\epsilon)=0 E(ξ)=0,E(η)=0,E(δ)=0,E(ϵ)=0,且 ϵ ≠ δ ≠ ξ , η \epsilon \neq \delta \neq \xi, \eta ϵ=δ=ξ,η
方程中符号具体含义如下表
主要研究:观察变量x能否准确测量潜变量 ξ \xi ξ,每个xi的可信度(应做“系数大小”理解?)
例子:
2、结构模型
η = B η + Γ ξ + ζ \eta = B\eta+\Gamma\xi+\zeta η=Bη+Γξ+ζ
假设 E ( η ) = 0 , E ( ξ ) = 0 , E ( ζ ) = 0 E(\eta)=0,E(\xi) = 0,E(\zeta)=0 E(η)=0,E(ξ)=0,E(ζ)=0,且 ζ , ξ \zeta ,\xi ζ,ξ不相关, ( I − B ) (I-B) (I−B)是非奇异阵
方程中符号具体含义如下表
主要研究:潜变量间的因果关系及其大小
例子:
latent endogenous variables-内生潜变量
latent exogenous variables-外生潜变量
(4)典型理论模型
1、一个潜变量对应一个观测变量
2、一个潜变量对应多个观测变量
3、潜变量之间存在因果关系
4、潜变量之间存在关联关系
例:“教育成就与期待模型”(Educational Achievement and Aspirations Model)的路径图(path diagram)
(5)关键环节
1、相关理论
- 概念
- 结构
- 形式化(Formalization)
2、基本问题
- 因果关系
- 模型构建:理论驱动or数据驱动
- 探索性分析or验证性分析
- 测量单位、标准化
- 尺度类型(Scale types)
3、统计相关问题
- 模型的规范化
- 模型和参数的识别
- 模型和参数的估计
- 模型的拟合和检验:评估拟合效果、检测未拟合部分(Detection of lack of fit)
- 检验关于结构的假设
4、计算相关问题
例子:计划行为理论(TPB)
- 理论模型
- Path diagram
(6)软件:LISREL
LISREL主要用于:
- 模型构建
- 精确估计和评估拟合效果
- 拟合和测试许多标准和非标准模型(non-standard models)
PRELIS主要用于:
- 处理数据:筛选、探索、摘要
- 计算:协方差矩阵、相关矩阵、动量矩阵(Moment matrix)、渐近协方差矩阵
(7)协方差代数
基本假设: H 0 : Σ = Σ ( θ ) H_0:\Sigma = \Sigma(\theta) H0:Σ=Σ(θ)
目的:选择合适的参数θ,使 Σ ( θ ) \Sigma(\theta) Σ(θ)和样本协方差矩阵S尽量接近
Σ \Sigma Σ:方程中观测变量一侧对应的协方差阵,下三角
θ \theta θ:观测变量对应的向量
Σ ( θ ) \Sigma(\theta) Σ(θ):方程中潜变量一侧对应的协方差阵,下三角
例子:简单回归 y = γ x + z y=\gamma x+z y=γx+z
Σ = ( v a r ( y ) c o v ( x , y )