前言
可能最近脑子有点坏了,突然想到这个奇怪的问题,就来写一下(
零维
零维是一个点,没有空间、时间、物质的概念。
一维
一维空间出现了最基本的图形线。
将若干个“零维空间”的点连接起来,就形成了线。因此一维空间只有长度。
二维
同理,我们继续将“一维空间”的线拼在一起,于是我们有了一个**二维平面图形**。
于是这里二维图形引入了新的概念:**宽度**。
三维
接着我们再把若干个平面图形“堆叠”起来,于是有了**高度**,也形成了**三维物体**。
一些奇怪的想法
如果我们是二维生物,那么我们看三维物体是什么样子的呢?
首先,我们作为三维生物,由于视网膜奇怪の特性,我们只能看到一个二维平面。
这意味着什么?说明二维生物在它们的世界中,看到的物体都是一维线段。
回归正题,当三维物体通过我们生活的**二维平面**时,二维平面上只会出现它的一个截面。
因此如果我们是二维生物,这个三维物体在我们看来会无法理解,因为它的形态太抽象了。
说白了就是,三维物体在二维平面的截面有无数多个,所以二维生物看三维物体穿越它们世界的时候觉得这个物体有“无限细节”,并且难以辨认出它的真正形态。
四维
好像很多人对四维的理解都是添加时间轴,当然我也是酱紫的。
或许学 OI 对理解四维空间有好处(?
现在我们以三维为基础,将每一个三维空间打包成一个“零维”的点。
那么根据上述的升维操作,我们把若干个三维空间“连起来”……
但这里的单位并不是长度,而是时间。
于是我们可以得到一条线,上面的每一个点都代表三维空间中的一个状态。
(这或许是四维空间?)
那么《三体》中三维人进入四维空间看到的的无限细节是什么意思?
根据这只笨蒟蒻的猜测,四维空间的生物看它们空间的物体,产生的感觉是“三维”的,然而我们三维生物看三维物体感觉它们是二维平面。
所以相当于我们用二维的眼光去衡量三维。
(好像又变成愚蠢的低维生物了)
因此就会出现像二维生物看三维物体时候奇怪的现象——这个物体貌似有无数多种形态,因为截面有无数多个。
五维
开始抽象了,这也是我目前的思维上限(无奈我太菜了)。
(当然这里的想象是建立在四维中“时间轴”的添加是正确的基础上 awa)
仍然是把原先的三维空间打包成一个点,那么五维就是相当于平面上放置多个三维点。
注意到我们当时是把线段“拼在一起”形成了二维图形,那么现在如果把他们拼在一起……?
那么我们把时间二维化,或许应当引入一个概念:“选择”?
原先时间轴上的每个点都可能做出不同的选择,再往下拓展一条时间链,而不像四维空间,它是“死的”,只能不变地向下个时间点不断推移。
如果你是四维生物,你当然可以在时间轴上跳跃,但你的人生已经是确定的了。
然而如果你是五维生物,你可以跳回到任意一个之前到过的点,然后重新选择另一条路。
抽象的说,相当于是一棵树,当中每个点都是一个被压缩的三维空间,每个点有多个子节点,它们之间的连边代表不同的选择。
不要看到树就想着树链剖分啊。
(虽然好像和 LCA 有点关系)
六维及以上
看咱们 AcWing 同学们的脑洞吧(