http://poj.org/problem?id=3169
题意:有 n 头牛 它们按照 1 - n 的顺序排成一列, 有些牛的距离必须大于等于某个值, 有些牛的距离必须小于等于某个值,相邻的两头牛距离必须大于等于 0 。
思路:不等式关系 可以用差分约束求解。这题要求的是1 和 n 的最大距离,那么将所有的不等式化成小于等于的的形式,然后用 spfa 求最短路径。
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn = 1000010;
const int inf = 0x7f7f7f7f;
struct node{
int to, val;
node(int x = 0, int y = 0){
to = x;
val = y;
}
};
int n;
int cnt[maxn];
int dis[maxn];
bool vis[maxn];
vector<node> eg[maxn];
int spfa(int rt)
{
cnt[rt]++;
dis[rt] = 0;
queue<int>que;
que.push(rt);
vis[rt] = true;
while(!que.empty())
{
int rw = que.front();
que.pop();
vis[rw] = false;
int len = eg[rw].size();
for(int i = 0; i < len; i++){
int son = eg[rw][i].to;
if(dis[son] > dis[rw] + eg[rw][i].val){
dis[son] = dis[rw] + eg[rw][i].val;
if(!vis[son]){
que.push(son);
vis[son] = true;
cnt[son]++;
if(cnt[son] > n)
return -1;
}
}
}
}
if(dis[n] == inf)
return -2;
return dis[n];
}
int main()
{
int ml, md;
while(~scanf("%d%d%d", &n, &ml, &md)){
int x, y, z;
memset(cnt, 0, sizeof(cnt));
memset(dis, 127, sizeof(dis));
memset(vis, false, sizeof(vis));
eg[0].clear(), eg[1].clear();
for(int i = 1; i < n; i++){
eg[i+1].clear();
eg[i+1].push_back(node(i, 0)); //d[i+1] - d[i] <= 0
}
for(int i = 0; i < ml; i++){
scanf("%d%d%d",&x, &y, &z);
eg[x].push_back(node(y, z)); // d[x] - d[y] <= z
}
for(int i = 0; i < md; i++){
scanf("%d%d%d",&x, &y, &z);
eg[y].push_back(node(x, -z)); //d[x] - d[y] >= z -> d[y] - d[x] <= -z
}
printf("%d\n", spfa(1));
}
return 0;
}