[POJ 3169] Layout 差分约束

http://poj.org/problem?id=3169

题意:有 n 头牛 它们按照 1 - n 的顺序排成一列, 有些牛的距离必须大于等于某个值, 有些牛的距离必须小于等于某个值,相邻的两头牛距离必须大于等于 0 。

思路:不等式关系 可以用差分约束求解。这题要求的是1 和 n 的最大距离,那么将所有的不等式化成小于等于的的形式,然后用 spfa 求最短路径。

#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 1000010;
const int inf = 0x7f7f7f7f;

struct node{
    int to, val;
    node(int x = 0, int y = 0){
        to = x;
        val = y;
    }
};

int n;
int cnt[maxn];
int dis[maxn];
bool vis[maxn];
vector<node> eg[maxn];

int spfa(int rt)
{
    cnt[rt]++;
    dis[rt] = 0;
    queue<int>que;
    que.push(rt);
    vis[rt] = true;
    while(!que.empty())
    {
        int rw = que.front();
        que.pop();
        vis[rw] = false;
        int len = eg[rw].size();
        for(int i = 0; i < len; i++){
            int son = eg[rw][i].to;
            if(dis[son] > dis[rw] + eg[rw][i].val){
                dis[son] = dis[rw] + eg[rw][i].val;
                if(!vis[son]){
                    que.push(son);
                    vis[son] = true;
                    cnt[son]++;
                    if(cnt[son] > n)
                        return -1;
                }
            }
        }
    }
    if(dis[n] == inf)
        return -2;
    return dis[n];
}

int main()
{
    int ml, md;
    while(~scanf("%d%d%d", &n, &ml, &md)){
        int x, y, z;
        memset(cnt, 0, sizeof(cnt));
        memset(dis, 127, sizeof(dis));
        memset(vis, false, sizeof(vis));
        eg[0].clear(), eg[1].clear();
        for(int i = 1; i < n; i++){
            eg[i+1].clear();
            eg[i+1].push_back(node(i, 0)); //d[i+1] - d[i] <= 0
        }
        for(int i = 0; i < ml; i++){
            scanf("%d%d%d",&x, &y, &z);
            eg[x].push_back(node(y, z)); // d[x] - d[y] <= z
        }
        for(int i = 0; i < md; i++){
            scanf("%d%d%d",&x, &y, &z);
            eg[y].push_back(node(x, -z)); //d[x] - d[y] >= z -> d[y] - d[x] <= -z
        }
        printf("%d\n", spfa(1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

achonor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值