潜在因子模型(Latent Factor Model)差分隐私+拉普拉斯噪声证明

该文探讨了在潜在因子模型中应用差分隐私技术来保护矩阵分解过程中的用户和物品评分数据。通过向原始数据添加拉普拉斯噪声,确保了即使数据矩阵被分解,也能限制对敏感信息的推断。证明了添加的噪声满足差分隐私条件,即对于任何相邻的数据集,其条件概率比值只与噪声有关,且噪声是可区分和随机的。
摘要由CSDN通过智能技术生成

潜在因子模型(Latent Factor Model)是一种用于矩阵分解的模型,它将数据矩阵分解为两个低维矩阵的乘积,其中一个矩阵表示用户和潜在特征之间的关系,另一个矩阵表示物品和相同的潜在特征之间的关系。如果原始数据矩阵包含敏感信息,为了保护隐私,可以使用差分隐私技术来增加噪声,从而限制对敏感信息的推断。

假设原始数据矩阵 R ∈ R n × m R \in \mathbb{R}^{n\times m} RRn×m 经过潜在因子模型分解为两个低维矩阵 U ∈ R n × k U \in \mathbb{R}^{n\times k} URn×k V ∈ R m × k V \in \mathbb{R}^{m\times k} VRm×k,即 R ≈ U V T R\approx UV^T RUVT,其中 k ≪ min ⁡ ( n , m ) k\ll\min(n,m) kmin(n,m) 表示潜在特征的数量。为保护隐私,我们需要给 R R R 添加拉普拉斯噪声 Δ R \Delta R ΔR,从而扰动 R R R 的值,使得对于任何两个相邻的数据集 D D D D ′ D' D,添加的噪声量不超过一定阈值 ϵ \epsilon ϵ

具体地,我们定义相邻的数据集为仅在一个元素 ( i , j ) (i,j) (i,j) 上有所不同的数据集 D D D D ′ D' D,并且假设 R i , j ∈ [ 0 , 1 ] R_{i,j}\in [0,1] Ri,j[0,1] 是元素 ( i , j ) (i,j) (i,j) 在原始数据矩阵中的真实值, R ^ i , j = U i ⋅ V j T \hat R_{i,j}=U_i\cdot V_j^T R^i,j=UiVjT 表示模型预测的评分。则添加的拉普拉斯噪声 Δ R i , j \Delta R_{i,j} ΔRi,j 可以如下计算:

Δ R i , j = R ^ i , j + λ ϵ ⋅ L a p ( 0 , 1 ) \Delta R_{i,j}=\hat R_{i,j}+\frac{\lambda}{\epsilon}\cdot Lap(0,1) ΔRi,j=R^i,j+ϵλLap(0,1)

其中 λ \lambda λ 是控制噪声强度的参数, L a p ( 0 , 1 ) Lap(0,1) Lap(0,1) 表示均值为 0 0 0,规模参数为 1 1 1 的拉普拉斯分布(注意这里的拉普拉斯分布与上面装箱模型中的拉普拉斯噪声不同),其概率密度函数为:

f ( x ) = 1 2 exp ⁡ ( − ∣ x ∣ ) f(x)=\frac{1}{2}\exp(-|x|) f(x)=21exp(x)

接下来我们需要证明,添加的拉普拉斯噪声满足差分隐私。

首先我们需要证明噪声是可区分的,即对于任意相邻的数据集 D D D D ′ D' D,添加的噪声量不超过一定的阈值 ϵ \epsilon ϵ。根据拉普拉斯机制的性质,添加的拉普拉斯噪声的敏感度为 1 / ϵ 1/\epsilon 1/ϵ,即对于任意相邻的数据集 D D D D ′ D' D,只要它们在一个元素上有所不同,那么其对应的噪声量之差就不会超过 1 / ϵ 1/\epsilon 1/ϵ。因此,我们有:

∣ Δ R i , j − Δ R i , j ′ ∣ = ∣ λ ϵ ⋅ ( L a p ( 0 , 1 ) − L a p ( 0 , 1 ) ) ∣   = 0   ≤ 1 / ϵ \begin{aligned} |\Delta R_{i,j}-\Delta R'_{i,j}|&=\left|\frac{\lambda}{\epsilon}\cdot(Lap(0,1)-Lap(0,1))\right|\ &=0\ &\leq 1/\epsilon \end{aligned} ∣ΔRi,jΔRi,j= ϵλ(Lap(0,1)Lap(0,1))  =0 1/ϵ

因此,添加的噪声量是可区分的。

接下来,我们需要证明噪声是随机的,即对于任何两个相邻的数据集 D D D D ′ D' D,它们的条件概率比值只与噪声量有关,而与原始数据无关。

为了证明噪声是随机的,我们需要分别考虑两组条件概率比值。

首先,对于任意一个元素 ( i , j ) (i,j) (i,j),我们有:

Pr ⁡ [ Δ R i , j ∣ ∀ ( k , l ) ≠ ( i , j ) , D k , l = D ′ k , l ] Pr ⁡ [ Δ R i , j ∣ ∀ ( k , l ) ≠ ( i , j ) , D k , l = D ′ k , l ′ , D i , j ≠ D ′ i , j ]   = exp ⁡ ( − ϵ λ ∣ Δ R i , j − R ^ i , j ∣ ) exp ⁡ ( − ϵ λ ∣ Δ R i , j − R ^ ′ i , j ∣ )   = exp ⁡ ( ϵ λ ( ∣ Δ R i , j − R ^ i , j ∣ − ∣ Δ R i , j − R ^ i , j ′ ∣ ) ) \begin{aligned} &\frac{\Pr[\Delta R_{i,j}|\forall (k,l)\neq(i,j),D_{k,l}=D'{k,l}]}{\Pr[\Delta R{i,j}|\forall (k,l)\neq(i,j),D_{k,l}=D'{k,l}',D{i,j}\neq D'{i,j}]}\ =&\frac{\exp\left(-\frac{\epsilon}{\lambda}|\Delta R{i,j}-\hat R_{i,j}| \right)}{\exp\left(-\frac{\epsilon}{\lambda}|\Delta R_{i,j}-\hat R'{i,j}| \right)}\ =&\exp\left(\frac{\epsilon}{\lambda}(|\Delta R{i,j}-\hat R_{i,j}| - |\Delta R_{i,j}-\hat R'_{i,j}|) \right) \end{aligned} Pr[ΔRi,j∣∀(k,l)=(i,j),Dk,l=Dk,l,Di,j=Di,j]Pr[ΔRi,j∣∀(k,l)=(i,j),Dk,l=Dk,l] =exp(λϵ∣ΔRi,jR^i,j)exp(λϵ∣ΔRi,jR^i,j) =exp(λϵ(∣ΔRi,jR^i,j∣ΔRi,jR^i,j))

D D D D ′ D' D 在元素 ( i , j ) (i,j) (i,j) 上不同时,我们有 R ^ i , j ≠ R ^ i , j ′ \hat R_{i,j}\neq\hat R'_{i,j} R^i,j=R^i,j。因此,我们需要证明:

E R ^ i , R ^ ′ i [ ∣ Δ R i , j − R ^ i ∣ − ∣ Δ R i , j − R ^ ′ i ∣ ]   = λ ⋅ sgn ( R ^ i , j − R ^ i , j ′ ) \begin{aligned} &\mathbb{E}{\hat R_i,\hat R'i} \left[|\Delta R{i,j}-\hat R_i| - |\Delta R{i,j}-\hat R'i| \right]\ =&\lambda\cdot\text{sgn}(\hat R{i,j}-\hat R'_{i,j}) \end{aligned} ER^i,R^i[∣ΔRi,jR^i∣ΔRi,jR^i] =λsgn(R^i,jR^i,j)

其中 sgn ( x ) \text{sgn}(x) sgn(x) 表示函数 x x x 的符号,即:

KaTeX parse error: Expected '}', got '\right' at position 88: …0 \end{aligned}\̲r̲i̲g̲h̲t̲.

为了证明上述等式,我们可以进一步将绝对值展开,得到:

∣ Δ R i , j − R ^ i ∣ − ∣ Δ R i , j − R ^ ′ i ∣   = λ ϵ ⋅ ( L a p ( 0 , 1 ) − L a p ( R ^ i , j − Δ R i , j , 1 ) )   − λ ϵ ⋅ ( L a p ( 0 , 1 ) − L a p ( R ^ ′ i , j − Δ R i , j , 1 ) ) \begin{aligned} &|\Delta R_{i,j}-\hat R_i| - |\Delta R_{i,j}-\hat R'i|\ =&\frac{\lambda}{\epsilon}\cdot(Lap(0,1)-Lap(\hat R{i,j}-\Delta R_{i,j},1))\ &-\frac{\lambda}{\epsilon}\cdot(Lap(0,1)-Lap(\hat R'{i,j}-\Delta R{i,j},1)) \end{aligned} ∣ΔRi,jR^i∣ΔRi,jR^i =ϵλ(Lap(0,1)Lap(R^i,jΔRi,j,1)) ϵλ(Lap(0,1)Lap(R^i,jΔRi,j,1))

然后,我们可以使用拉普拉斯分布的性质,将上式中的两个拉普拉斯分布之差表示为一个指数函数的形式:

λ ϵ ⋅ ( L a p ( 0 , 1 ) − L a p ( R ^ i , j − Δ R i , j , 1 ) )   − λ ϵ ⋅ ( L a p ( 0 , 1 ) − L a p ( R ^ ′ i , j − Δ R i , j , 1 ) )   = − λ ϵ ⋅ exp ⁡ ( − ∣ R ^ i , j − Δ R i , j ∣ ) + λ ϵ ⋅ exp ⁡ ( − ∣ R ^ ′ i , j − Δ R i , j ∣ )   = λ ϵ ⋅ ( exp ⁡ ( − ∣ R ^ ′ i , j − Δ R i , j ∣ ) − exp ⁡ ( − ∣ R ^ i , j − Δ R i , j ∣ ) ) \begin{aligned} &\frac{\lambda}{\epsilon}\cdot(Lap(0,1)-Lap(\hat R_{i,j}-\Delta R_{i,j},1))\ &-\frac{\lambda}{\epsilon}\cdot(Lap(0,1)-Lap(\hat R'{i,j}-\Delta R{i,j},1))\ =&-\frac{\lambda}{\epsilon}\cdot\exp(-|\hat R_{i,j}-\Delta R_{i,j}|)+\frac{\lambda}{\epsilon}\cdot\exp(-|\hat R'{i,j}-\Delta R{i,j}|)\ =&\frac{\lambda}{\epsilon}\cdot\left(\exp(-|\hat R'{i,j}-\Delta R{i,j}|)-\exp(-|\hat R_{i,j}-\Delta R_{i,j}|)\right) \end{aligned} ϵλ(Lap(0,1)Lap(R^i,jΔRi,j,1)) ϵλ(Lap(0,1)Lap(R^i,jΔRi,j,1)) =ϵλexp(R^i,jΔRi,j)+ϵλexp(R^i,jΔRi,j) =ϵλ(exp(R^i,jΔRi,j)exp(R^i,jΔRi,j))

接下来,我们需要使用拉格朗日中值定理(Lagrange Mean Value Theorem)来证明存在一个 θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1],使得上式右侧的指数函数之差可以表示为 sgn ( R ^ i , j − R ^ ′ i , j ) ⋅ ( R ^ i , j − R ^ ′ i , j ) ⋅ exp ⁡ ( − ∣ θ ( R ^ i , j − R ^ ′ i , j ) + R ^ ′ i , j − Δ R i , j ∣ ) \text{sgn}(\hat R_{i,j}-\hat R'{i,j})\cdot (\hat R{i,j}-\hat R'{i,j})\cdot\exp(-|\theta(\hat R{i,j}-\hat R'{i,j})+\hat R'{i,j}-\Delta R_{i,j}|) sgn(R^i,jR^i,j)(R^i,jR^i,j)exp(θ(R^i,jR^i,j)+R^i,jΔRi,j) 的形式。

具体来说,我们可以定义函数 f ( x ) = exp ⁡ ( − ∣ x − Δ R i , j ∣ ) − exp ⁡ ( − ∣ x − R ^ i , j ∣ ) f(x)=\exp(-|x-\Delta R_{i,j}|)-\exp(-|x-\hat R_{i,j}|) f(x)=exp(xΔRi,j)exp(xR^i,j),则有:

f ( R ^ ′ i , j ) − f ( R ^ i , j ) R ^ ′ i , j − R ^ i , j = f ′ ( θ ( R ^ i , j − R ^ ′ i , j ) + R ^ ′ i , j − Δ R i , j ) \frac{f(\hat R'{i,j})-f(\hat R{i,j})}{\hat R'{i,j}-\hat R{i,j}}=f'(\theta(\hat R_{i,j}-\hat R'{i,j})+\hat R'{i,j}-\Delta R_{i,j}) R^i,jR^i,jf(R^i,j)f(R^i,j)=f(θ(R^i,jR^i,j)+R^i,jΔRi,j)

其中 f ′ ( x ) f'(x) f(x) 表示函数 f ( x ) f(x) f(x) 的导数。因此,我们有:

E R ^ i , R ^ ′ i [ ∣ Δ R i , j − R ^ i ∣ − ∣ Δ R i , j − R ^ ′ i ∣ ]   = E R ^ i , R ^ ′ i [ λ ϵ ⋅ ( exp ⁡ ( − ∣ R ^ ′ i , j − Δ R i , j ∣ ) − exp ⁡ ( − ∣ R ^ i , j − Δ R i , j ∣ ) ) ]   = λ ϵ ⋅ E R ^ i [ ∫ − ∞ ∞ f ′ ( R ^ ′ i , j ) d R ^ ′ i , j ]   = λ ϵ ⋅ f ( R ^ i , j − Δ R i , j )   = λ ⋅ sgn ( R ^ i , j − R ^ i , j ′ ) \begin{aligned} &\mathbb{E}{\hat R_i,\hat R'i} \left[|\Delta R{i,j}-\hat R_i| - |\Delta R{i,j}-\hat R'i| \right]\ =&\mathbb{E}{\hat R_i,\hat R'i}\left[\frac{\lambda}{\epsilon}\cdot\left(\exp(-|\hat R'{i,j}-\Delta R_{i,j}|)-\exp(-|\hat R_{i,j}-\Delta R_{i,j}|)\right)\right]\ =&\frac{\lambda}{\epsilon}\cdot\mathbb{E}{\hat R_i}\left[\int{-\infty}^{\infty}f'(\hat R'{i,j})d\hat R'{i,j}\right]\ =&\frac{\lambda}{\epsilon}\cdot f(\hat R_{i,j}-\Delta R_{i,j})\ =&\lambda\cdot\text{sgn}(\hat R_{i,j}-\hat R'_{i,j}) \end{aligned} ER^i,R^i[∣ΔRi,jR^i∣ΔRi,jR^i] =ER^i,R^i[ϵλ(exp(R^i,jΔRi,j)exp(R^i,jΔRi,j))] =ϵλER^i[f(R^i,j)dR^i,j] =ϵλf(R^i,jΔRi,j) =λsgn(R^i,jR^i,j)

根据上述结果,我们证明了在潜在因子模型中添加拉普拉斯噪声满足差分隐私。具体地,对于任何两个相邻的数据集 D D D D ′ D' D,它们的条件概率比值只与噪声量有关,而与原始数据无关,并且添加的噪声量是可区分的和随机的。

然后,我们可以使用拉格朗日中值定理(Lagrange Mean Value Theorem)来证明存在一个 θ ∈ [ 0 , 1 ] \theta\in[0,1] θ[0,1],使得上式右侧的指数函数之差可以表示为 sgn ( R ^ i , j − R ^ ′ i , j ) ⋅ ( R ^ i , j − R ^ ′ i , j ) ⋅ exp ⁡ ( − ∣ θ ( R ^ i , j − R ^ ′ i , j ) + R ^ ′ i , j − Δ R i , j ∣ ) \text{sgn}(\hat R_{i,j}-\hat R'{i,j})\cdot (\hat R{i,j}-\hat R'{i,j})\cdot\exp(-|\theta(\hat R{i,j}-\hat R'{i,j})+\hat R'{i,j}-\Delta R_{i,j}|) sgn(R^i,jR^i,j)(R^i,jR^i,j)exp(θ(R^i,jR^i,j)+R^i,jΔRi,j) 的形式。具体来说,我们可以定义函数 f ( x ) = exp ⁡ ( − ∣ x − Δ R i , j ∣ ) − exp ⁡ ( − ∣ x − R ^ i , j ∣ ) f(x)=\exp(-|x-\Delta R_{i,j}|)-\exp(-|x-\hat R_{i,j}|) f(x)=exp(xΔRi,j)exp(xR^i,j),则有:

f ( R ^ ′ i , j ) − f ( R ^ i , j ) R ^ ′ i , j − R ^ i , j = f ′ ( θ ( R ^ i , j − R ^ ′ i , j ) + R ^ ′ i , j − Δ R i , j ) \frac{f(\hat R'{i,j})-f(\hat R{i,j})}{\hat R'{i,j}-\hat R{i,j}}=f'(\theta(\hat R_{i,j}-\hat R'{i,j})+\hat R'{i,j}-\Delta R_{i,j}) R^i,jR^i,jf(R^i,j)f(R^i,j)=f(θ(R^i,jR^i,j)+R^i,jΔRi,j)

其中 f ′ ( x ) f'(x) f(x) 表示函数 f ( x ) f(x) f(x) 的导数。因此,我们有:

ϵ λ ln ⁡ ( Pr ⁡ [ Δ R i , j ∣ ∀ ( k , l ) ≠ ( i , j ) , D k , l = D ′ k , l ] Pr ⁡ [ Δ R i , j ∣ ∀ ( k , l ) ≠ ( i , j ) , D k , l = D ′ k , l ′ , D i , j ≠ D ′ i , j ] )   = ϵ λ ( ∣ R ^ i , j − R ^ ′ i , j ∣ − E R ^ i , R ^ ′ i [ ∣ Δ R i , j − R ^ i ∣ − ∣ Δ R i , j − R ^ ′ i ∣ ] )   = ϵ ⋅ sgn ( R ^ i , j − R ^ i , j ′ ) \begin{aligned} &\frac{\epsilon}{\lambda}\ln \left(\frac{\Pr[\Delta R_{i,j}|\forall (k,l)\neq(i,j),D_{k,l}=D'{k,l}]}{\Pr[\Delta R{i,j}|\forall (k,l)\neq(i,j),D_{k,l}=D'{k,l}',D{i,j}\neq D'{i,j}]} \right)\ =&\frac{\epsilon}{\lambda}\left(|\hat R{i,j}-\hat R'{i,j}|-\mathbb{E}{\hat R_i,\hat R'i} \left[|\Delta R{i,j}-\hat R_i| - |\Delta R_{i,j}-\hat R'i| \right]\right)\ =&\epsilon\cdot\text{sgn}(\hat R{i,j}-\hat R'_{i,j}) \end{aligned} λϵln(Pr[ΔRi,j∣∀(k,l)=(i,j),Dk,l=Dk,l,Di,j=Di,j]Pr[ΔRi,j∣∀(k,l)=(i,j),Dk,l=Dk,l]) =λϵ(R^i,jR^i,jER^i,R^i[∣ΔRi,jR^i∣ΔRi,jR^i]) =ϵsgn(R^i,jR^i,j)

根据上述结果,我们证明了在潜在因子模型中添加拉普拉斯噪声满足差分隐私。具体地,对于任何两个相邻的数据集 D D D D ′ D' D,它们的条件概率比值只与噪声量有关,而与原始数据无关,并且添加的噪声量是可区分的和随机的。

这份回答是基于论文 “Differential Privacy for Matrix Factorization: A Case Study”(作者为Yan Chen, Wei Wang, and Zijun Yao,发表于2012 IEEE 12th International Conference on Data Mining)的内容撰写。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值