【Matlab算法】灰狼优化算法问题(Grey Wolf Optimization)(附MATLAB完整代码)

前言

灰狼优化算法(Grey Wolf Optimization,GWO) 是一种模拟灰狼社会行为的启发式优化算法。它是由Seyedali Mirjalili等人于2014年提出的,灵感来源于观察灰狼社会结构中的等级和合作关系。

算法描述:

初始化群体位置: 算法开始时,将一群灰狼表示为潜在解的候选集合,这些解的位置在搜索空间中随机分布。

确定灰狼的等级: 根据适应度值,确定每个灰狼的等级。适应度越高的个体,其等级越高。

确定领导者灰狼: 选择适应度最好的灰狼作为领导者,其位置被认为是当前搜索空间中的一个潜在最优解。

更新灰狼位置: 根据灰狼社会行为规律,灰狼个体会根据领导者的位置以及其他灰狼的位置来更新自身位置。这一过程涉及到三个步骤:

追逐(Chasing): 灰狼个体通过模仿领导者的位置来更新自己的位置。这里采用线性插值的方式来调整灰狼的位置。

跟随(Following): 灰狼个体通过模仿处于追逐状态的其他灰狼的位置来更新自身位置。

探索(Exploration): 除了追逐和跟随,灰狼还会进行一定程度的随机探索,以确保算法具有全局搜索的能力。

适应度评估: 计算更新后每个灰狼的适应度值。

更新领导者: 如果某个灰狼的适应度比当前领导者更好,那么将该灰狼设为新的领导者。

重复迭代: 重复执行步骤4到步骤6,直到满足停止条件,例如达到最大迭代次数或适应度足够收敛。

算法特点:

群体智能: 灰狼优化算法模拟了灰狼社会行为,利用群体智能的特性,通过合作和竞争来引导搜索过程。

简单而有效: 灰狼优化算法的思想简单,易于实现,同时在许多优化问题上表现出色。

全局搜索和局部搜索: 灰狼优化算法在搜索空间中同时进行全局搜索和局部搜索,通过领导者和追逐行为实现全局探索,通过跟随和探索行为实现局部搜索。

对问题无依赖: 灰狼优化算法不依赖于问题的特定形式,适用于多种类型的优化问题。
在这里插入图片描述

正文

接下来我们将针对以下函数进行优化:
f ( x ) = A ⋅ exp ⁡ ( − ∥ x − c ∥ 2 σ 2 ) f(\mathbf{x}) = A \cdot \exp\left(-\frac{\|\mathbf{x} - \mathbf{c}\|^2}{\sigma^2}\right) f(x)=Aexp(σ2xc2)
其中:
x x x 是输入的向量,表示当前点的坐标。
A A A 是振幅(amplitude),用于控制峰值的高度。
c c c 是随机生成的中心点,用于控制峰值的位置。
σ σ σ 是 spread 参数,用于控制高斯分布的标准差。
这个表达式表示一个高斯分布的贡献,而在 objectiveFunction 中,多个这样的高斯分布通过循环累加在一起,模拟了多峰函数的形状。

代码实现

clear
clc
close all
warning off

num_wolves = 10;
num_dimensions = 3;
num_iterations = 100;

[best_solution, best_fitness] = greyWolfOptimization_x(num_wolves, num_dimensions, num_iterations);

function [best_solution, best_fitness] = greyWolfOptimization_x(num_wolves, num_dimensions, num_iterations)
    % 参数说明:
    % num_wolves:狼群大小
    % num_dimensions:问题的维度
    % num_iterations:迭代次数

    % 初始化灰狼群的位置
    wolves_positions = rand(num_wolves, num_dimensions);

    % 初始化灰狼群的适应度
    wolves_fitness = zeros(num_wolves, 1);

    % 初始化最佳解和最佳适应度
    best_solution = rand(1, num_dimensions);
    best_fitness = inf;

    % 主循环
    for iteration = 1:num_iterations
        % 更新每只狼的适应度
        for i = 1:num_wolves
            % 计算适应度,这里的目标函数需要根据具体问题修改
            wolves_fitness(i) = objectiveFunction(wolves_positions(i, :));

            % 更新最佳解和最佳适应度
            if wolves_fitness(i) < best_fitness
                best_fitness = wolves_fitness(i);
                best_solution = wolves_positions(i, :);
            end
        end

        % 更新每只狼的位置
        a = 2 - iteration * (2 / num_iterations); % 调整参数a
        for i = 1:num_wolves
            r1 = rand(); % 随机数
            r2 = rand(); % 随机数

            A1 = 2 * a * r1 - a; % 计算A1
            C1 = 2 * r2; % 计算C1

            D_alpha = abs(C1 * best_solution - wolves_positions(i, :)); % 计算D_alpha
            X1 = best_solution - A1 * D_alpha; % 计算X1

            r1 = rand(); % 随机数
            r2 = rand(); % 随机数

            A2 = 2 * a * r1 - a; % 计算A2
            C2 = 2 * r2; % 计算C2

            D_beta = abs(C2 * best_solution - wolves_positions(i, :)); % 计算D_beta
            X2 = best_solution - A2 * D_beta; % 计算X2

            r1 = rand(); % 随机数
            r2 = rand(); % 随机数

            A3 = 2 * a * r1 - a; % 计算A3
            C3 = 2 * r2; % 计算C3

            D_delta = abs(C3 * best_solution - wolves_positions(i, :)); % 计算D_delta
            X3 = best_solution - A3 * D_delta; % 计算X3

            % 更新狼的位置
            wolves_positions(i, :) = (X1 + X2 + X3) / 3;
        end
    end
end

function fitness = objectiveFunction(x)
    % 复杂的目标函数示例,多峰函数
    % 这里使用了多个高斯分布的和,模拟多个峰值

    num_peaks = 5; % 设置峰值数量
    amplitude = 10; % 设置峰值的振幅
    spread = 5; % 控制分布的宽度

    % 计算多个峰值的贡献
    peaks = zeros(num_peaks, 1);
    for i = 1:num_peaks
        peaks(i) = amplitude * exp(-(norm(x - rand(1, numel(x))) / spread)^2);
    end

    % 多峰函数的值为所有峰值的和
    fitness = sum(peaks);
end

  • 37
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位 ##### 6.2 无线传感器覆盖优化 ##### 6.3 室内定位 ##### 6.4 无线传感器通信及优化 ##### 6.5 无人机通信中继优化 #####
灰狼优化算法(Grey Wolf Optimization, GWO)是一种基于群体行为的智能优化算法,受到灰狼社会行为的启发。以下是一个简单的灰狼优化算法MATLAB 代码示例: ```matlab function [bestSolution, bestFitness] = greyWolfOptimization(dimensions, searchRange, numSearchAgents, maxIterations) % 初始化灰狼群体 alphaPosition = rand(1, dimensions) * (searchRange(2) - searchRange(1)) + searchRange(1); betaPosition = rand(1, dimensions) * (searchRange(2) - searchRange(1)) + searchRange(1); deltaPosition = rand(1, dimensions) * (searchRange(2) - searchRange(1)) + searchRange(1); % 初始化灰狼个体的位置与适应度 positions = rand(numSearchAgents, dimensions) * (searchRange(2) - searchRange(1)) + searchRange(1); fitness = objectiveFunction(positions); % 开始优化迭代 for iter = 1:maxIterations a = 2 - iter * ((2) / maxIterations); % 更新参数 a % 更新每个灰狼的位置与适应度 for i = 1:numSearchAgents r1 = rand(); % 随机数 r1 r2 = rand(); % 随机数 r2 A1 = 2 * a * r1 - a; % 更新参数 A1 C1 = 2 * r2; % 更新参数 C1 D_alpha = abs(C1 * alphaPosition - positions(i, :)); % 计算 delta_alpha X1 = alphaPosition - A1 * D_alpha; % 更新位置 X1 r1 = rand(); % 随机数 r1 r2 = rand(); % 随机数 r2 A2 = 2 * a * r1 - a; % 更新参数 A2 C2 = 2 * r2; % 更新参数 C2 D_beta = abs(C2 * betaPosition - positions(i, :)); % 计算 delta_beta X2 = betaPosition - A2 * D_beta; % 更新位置 X2 r1 = rand(); % 随机数 r1 r2 = rand(); % 随机数 r2 A3 = 2 * a * r1 - a; % 更新参数 A3 C3 = 2 * r2; % 更新参数 C3 D_delta = abs(C3 * deltaPosition - positions(i, :)); % 计算 delta_delta X3 = deltaPosition - A3 * D_delta; % 更新位置 X3 positions(i, :) = (X1 + X2 + X3) / 3; % 更新灰狼位置 positions(i, :) = max(positions(i, :), searchRange(1)); % 限制位置在搜索范围内 positions(i, :) = min(positions(i, :), searchRange(2)); % 限制位置在搜索范围内 fitness(i) = objectiveFunction(positions(i, :)); % 计算适应度 end % 更新 alpha, beta, 和 delta 灰狼的位置 [bestFitness, bestIndex] = min(fitness); bestSolution = positions(bestIndex, :); if fitness(bestIndex) < fitness(1) deltaPosition = betaPosition; betaPosition = alphaPosition; alphaPosition = bestSolution; elseif fitness(bestIndex) < fitness(2) deltaPosition = betaPosition; betaPosition = bestSolution; elseif fitness(bestIndex) < fitness(3) deltaPosition = bestSolution; end % 显示每次迭代的最佳适应度 disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(bestFitness)]); end end function fitness = objectiveFunction(x) % 定义你的目标函数 % 这里假设你的目标函数是 Rosenbrock 函数 fitness = sum(100 * (x(2:end) - x(1:end-1).^2).^2 + (1 - x(1:end-1)).^2); end ``` 你可以根据你的问题和目标函数来修改 `objectiveFunction` 函数。 这个示例代码演示了如何使用灰狼优化算法进行优化。代码中的 `dimensions` 是问题的维度,`searchRange` 是搜索范围,`numSearchAgents` 是灰狼的数量,`maxIterations` 是最大迭代次数。函数返回最优解 `bestSolution` 和最佳适应度 `bestFitness`。 请注意,这只是一个基本的实现示例,如果你的问题比较复杂,你可能需要根据自己的需求进行修改和优化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值