cesium调整3dtiles的位置用到的是平移矩阵,原理是在世界坐标系中用偏移点减去原始点得到一个平移向量,再根据这个向量得到平移矩阵。
- 原始点:一般是模型的中心点位置,可通过模型的包围盒得到
- 偏移点:可分为两种情况,
- 直接给出世界坐标系中的一个位置,这两个点在世界坐标系中没有相对关系
- 给出模型的相对位置,比如说让模型沿x轴正方向偏10米,此时这个偏移点和模型就有相对关系,但是偏移点在世界坐标系中并没有描述,因此需要根据模型建立一个局部坐标系,将局部坐标系变换到世界坐标,求出偏移点在世界坐标系中的值。注意:到这一步情况就和1相同了,后面的转换也和1相同。
一、加载 3dtiles
tileset = new Cesium.Cesium3DTileset({
url: '/data/tileset.json',
maximumScreenSpaceError: 2, //最大的屏幕空间误差
maximumNumberOfLoadedTiles: 1000, //最大加载瓦片个数
dynamicScreenSpaceError: true,
dynamicScreenSpaceErrorDensity: 0.00278,
dynamicScreenSpaceErrorFactor: 4.0,
dynamicScreenSpaceErrorHeightFalloff: 0.25,
skipLevelOfDetail: true,
baseScreenSpaceError: 1024,
skipScreenSpaceErrorFactor: 16,
skipLevels: 1,
immediatelyLoadDesiredLevelOfDetail: false,
loadSiblings: false,
cullWithChildrenBounds: true,
});
viewer.scene.primitives.add(tileset);
二、世界坐标系中的平移
tileset.readyPromise.then(function () {
// 模型外包围盒,center:模型中心点,radius:包围盒半径
let boundingSphere = tileset.boundingSphere;
// 模型中心点
let origin = boundingSphere.center;
// 偏移后的位置,世界坐标系中的位置,比如从经纬度1的位置偏移到经纬度2的位置,并不知道1和2的相对关系
let offset = Cesium.Cartesian3.fromDegrees(
113.296969, 38.390417, 39.974122
);
// 计算世界坐标系下平移向量
let translate = Cesium.Cartesian3.subtract(
offset,
origin,
new Cesium.Cartesian3()
);
tileset.modelMatrix = Cesium.Matrix4.fromTranslation(translate);
});
三、相对位置的平移
tileset.readyPromise.then(function () {
// 模型外包围盒,center:模型中心点,radius:包围盒半径
let boundingSphere = tileset.boundingSphere;
// 模型中心点
let origin = boundingSphere.center;
// 获取到以模型中心为原点,Z轴垂直地表的局部坐标系,以矩阵表示,此矩阵为将局部坐标系变换到世界坐标系的变换矩阵
let localMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(origin);
// 平移向量(tx,ty,tz) 此处表示沿着x轴平移10米,y轴和z轴不变
let tempTranslation = new Cesium.Cartesian3(10, 0, 0);
// 偏移后的位置,世界坐标系中的位置,即:局部坐标中(tx,ty,tz)在世界坐标系中位置
let offset = Cesium.Matrix4.multiplyByPoint(localMatrix, tempTranslation, new Cesium.Cartesian3(0, 0, 0));
// 计算世界坐标系下平移向量
let translate = Cesium.Cartesian3.subtract(
offset,
origin,
new Cesium.Cartesian3()
);
tileset.modelMatrix = Cesium.Matrix4.fromTranslation(translate);
});
总结:两种情况的平移原理是一样的,都是在世界坐标系中 偏移点-原始点 得到平移向量,只是相对位置的平移多了局部坐标系到世界坐标系转换的过程。