不同的靶材(Cu,Cr,Co,Mo,Fe靶)对XRD谱有什么影响

关于这个问题,科学指南针平台在无数次实践中发现不同的靶,其特征波长不同。使用不同的靶也就是所用的X射线的波长不同、使用波长较长的靶材的XRD所得的衍射图峰位沿2θ轴有规律拉伸;使用短波长靶材的XRD谱沿2θ轴有规律地被压缩。

但不管使用何种靶材的X射线管,从所得到的衍射谱中获得样品面间距d值是一致的,与靶材无关。辐射波长对衍射峰强的关系是:虽然衍射峰强主要决定于晶体的结构,但是由于样品的质量吸收系数(MAC)也和入射线的波长有关。因此同一样品用不同靶所取得的图谱上衍射峰间的相对强度会稍有差别,与靶材有关。特别是混合物,各相之间的MAC都随所选波长而变化,波长选择不当很可能造成XRD定量结果不准确。各元素的MAC突变时的波长值称为该元素的吸收边或吸收限。

如果分析样品中的元素的原子序数比靶的元素的原子序数小1至4,就会出现强的荧光散射。例如使用Fe靶分析主要成分元素为FeCoNi的样品是合适的,而不适合分析含有MnCrVTi的物质.Cu靶不适合于分析有CrMnFeCoNi这些元素的物质。因为荧光X射线的强度将叠加在衍射图的背景上,造成很高的背景,不利于衍射图的分析。如果设备没有配置弯晶石墨单色器仅使用Kβ滤片,选波长(或者说选靶)主要考虑的就是样品中的主要组成元素不会受激发而产生强烈的荧光X射线。

科学指南针平台甄选优质仪器,为广大科研工作者提供方便、快速、更具性价比的分析测试服务,如有XRD测试需求,可以和科学指南针联系,惟祝各位科研之路顺利。

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉图像处理领域的技术。在深度学习机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测匹配、几何变换等功能。此外,MATLAB还支持编程脚本,方便算法的调试优化。 深度学习机器学习在此处的角色主要是改进匹配过程图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性质量。 基于块匹配的全景图像拼接是通过匹配融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习机器学习的先进方法,提升匹配精度图像融合质量。通过对压缩包中的代码数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值