数学表达式魔训

本文是一篇关于提升数学表达式理解和使用的训练教程,内容涵盖第一天的概论、集合论、向量与矩阵,第二天的二元关系和函数,以及第三天的相关练习。文章强调了数学表达式在学术写作中的重要性,提供了抄写和理解公式的方法,同时也指出了常见错误和注意事项。训练包括符号统一、矩阵乘法、函数关系、模2同余关系、粗糙集理论等概念的探讨,并配有相关例题和作业。
摘要由CSDN通过智能技术生成

引言

你好!这里是引言,随着课程的推进将会不断丰富此段内容。

1. 第一天

在这段中,主要讲经过一天的学习,自己的收获以及体验,并且对学到的东西学以致用,简单说就是写一些小例子。当然,还要完成一些小挑战。先说一下这一天的收获吧,知识性的东西在 @minfanphd 文档里面都可以看见,因此不在这里进行重复叙述。

概论

首先,数学语言的重要性毋庸置疑,它可以说是最简洁的一种语言,能够非常简单的将我们要讲述的事情表达清楚。也是因为我们的式子 (equation) 写的不够好才有了这次的魔鬼培训。 如果对这些比较恐惧 – 包括看到式子写不出代码或者写出了代码但写不出式子,模仿无疑是有效的一种方法。对这那些大佬写的书,将他们的公式抄写几遍,俗话说书读百遍其义自见,那么公式多抄几遍,也就有了自己的体会。

另外有几个需要特别注意的地方:
1. 一篇论文中的格式要统一,也就是 @minfanphd 常说的内部系统不能出错。
2. equation 以及 expression才是我们应当写进论文的。
3. 不要写 “xxx 提出了” 以及 “xxx说”。
4. 学到了 \left 和 \right 的使用方法(将在下文使用)。

集合论

1. \mathrm 的使用,使用和不使用的效果为: a \mathrm{a} a a {a} a.
2. 这个 ∅ \emptyset 才是空集,这个 ϕ \phi ϕ不是.
3. A ∪ B \mathbf{A} \cup \mathbf{B} AB ⋃ i = 1 n A i \bigcup_{i=1}^n \mathbf{A}_i i=1nAi A ∩ B \mathbf{A} \cap \mathbf{B} AB ⋂ i = 1 n B i \bigcap_{i=1}^n \mathbf{B}_i i=1nBi A ∖ B \mathbf{A} \setminus \mathbf{B} AB A ‾ \overline{A} A B ‾ \underline{B} B.
4. A \mathbf{A} A的幂集为: 2 A = { B ∣ B ⊆ A } 2^{\mathbf{A}} = \{\mathbf{B} \vert \mathbf{B} \subseteq \mathbf{A}\} 2A={ BBA}.
5. 笛卡尔积 A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } \mathbf{A} \times \mathbf{B} = \{(a, b) \vert a \in \mathbf{A}, b \in \mathbf{B}\} A×B={ (a,b)aA,bB}.
6. 一维数据的空间为 R \mathbb{R} R, 二维为 R 2 \mathbb{R}^2 R2, n n n维为 R n \mathbb{R}^n Rn.

向量与矩阵

1. 这是行向量 x = ( x 1 , … , x n ) = [ x 1 , … , x n ] ∈ R n \mathbf{x} = (x_1, \dots, x_n) = [x_1, \dots, x_n] \in \mathbb{R}_n x=(x1,,xn)=[x1,,xn]Rn
2. 这是列向量 x T = ( x 1 , … , x n ) T = [ x 1 ; …   ; x n ] \mathbf{x}^\mathrm{T} = (x_1, \dots, x_n)^\mathrm{T} = [x_1; \dots; x_n] xT=(x1,,xn)T=[x1;;xn].
3. 假设矩阵有 n n n m m m列: X = [ x i j ] n × m ∈ R n × m X = [x_{ij}]_{n \times m} \in \mathbb{R}^{n \times m} X=[xij]n×mRn×m.

作业

学习、使用数学表达式时的困难

  1. 经常遇到的是符号不统一的问题。如在单标签的有监督学习中,数据集 D = ( X , Y ) \mathbf{D} = (\mathbf{X}, \mathbf{Y}) D=(X,Y),其中 X = ( x 1 , … , x n ) \mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) X=(x1,,xn) Y = ( y 1 , … , y n ) \mathbf{Y} = (y_1, \dots, y_n) Y=(y1,,yn)。这是在上文中写出来的,写到后面可能就会变成 X = ( m 1 , … , m n ) \mathbf{X} = (\mathbf{m}_1, \dots, \mathbf{m}_n) X=(m1,,mn),写的比较随心所欲。

  2. 其次是别人的式子写的太复杂,看起来比较头疼。这里的复杂并不是公式本身有多复杂,而是变量太多,许多的符号意义不明。例如在式子(1) 和式子 (2) 中,掺杂着大量未知符号 h , μ , π , a h, \mu, \pi, a h,μ,π,a等,就很难理解。

T r , h μ , π Q ( x , a ) = h ( E τ ∼ T [ h − 1 ( Q ( x , a ) ) + ∑ t ≥ 0 γ t ( ∏ s = 1 t c s ) δ t h ] ) , (1) T_{r, h}^{\mu, \pi} Q(x, a) = h\left( \mathbb{E}_{\tau \sim T} \left[ h^{-1} (Q(x, a)) + \sum_{t \ge 0}^{} \gamma^t \left( \prod_{s=1}^t c_s \right) \delta_t^h \right] \right) \tag{1}, Tr,hμ,πQ(x,a)=h(EτT[h1(Q(x,a))+t0γt(s=1tcs)δth]),(1)

δ t h = r t + γ ∑ a ∈ A π ( a ∣ X t + 1 ) h − 1 ( Q ( X t + 1 , a ) ) − h − 1 ( Q ( X t , A t ) ) . (2) \delta_t^h = r_t + \gamma \sum_{a \in A} \pi (a \vert X_{t+1}) h^{-1}(Q(X_{t+1}, a)) - h^{-1}(Q(X_t, A_t)) \tag{2}. δth=rt+γaAπ(aXt+1)h1(Q(Xt+1,a))h1(Q(Xt,A

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值