复变函数(5)-孤立奇点与留数

本文详细介绍了复变函数中的孤立奇点类型,包括可去奇点、极点和本性奇点,并阐述了零点和函数在无穷远点的性质。重点讲解了留数的概念,提供了计算极点和无穷远点留数的方法,强调留数定理的应用。
摘要由CSDN通过智能技术生成

复变函数(5)-孤立奇点与留数

 

                         阳气初惊蛰,韶光大地周
 
 
 

5.1 孤立奇点:

 设 z 0 z_0 z0 f ( z ) f(z) f(z)的一个奇点,如果 f ( z ) f(z) f(z) z 0 z_0 z0的某一去心邻域 0 < ∣ z − z 0 ∣ < δ 0<|z-z_0|<\delta 0<zz0<δ内处处解析,那么称 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点。

5.2 可去奇点:

 设 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,如果 f ( z ) f(z) f(z) z 0 z_0 z0的去心邻域内的洛朗展开式不含 ( z − z 0 ) (z-z_0) (zz0)的负幂项,则 z 0 z_0 z0称为 f ( z ) f(z) f(z)的可去奇点。此时 f ( z ) f(z) f(z) z 0 z_0 z0的去心邻域内可展开为
f ( z ) = c 0 + c 1 ( z − z 0 ) + ⋯ + c n ( z − z 0 ) n + ⋯ ( 0 < ∣ z − z 0 ∣ < δ ) f(z)=c_0+c_1(z-z_0)+\cdots+c_n(z-z_0)^n+\cdots\quad (0<|z-z_0|<\delta) f(z)=c0+c1(zz0)++cn(zz0)n+(0<zz0<δ) 如果令 f ( z 0 ) = c 0 f(z_0)=c_0 f(z0)=c0 f ( z ) f(z) f(z) z 0 z_0 z0点也成为解析的。
 孤立奇点 z 0 z_0 z0为函数 f ( z ) f(z) f(z)的可去奇点的充要条件为 lim ⁡ z → z 0 f ( z ) = c 0 \lim\limits_{z\to z_0}f(z)=c_0 zz0limf(z)=c0,其中 c 0 c_0 c0 f ( z ) f(z) f(z)洛朗展开式的常数项。

5.3 极点:

 设 z 0 z_0 z0 f ( z ) f(z) f(z)的孤立奇点,如果 f ( z ) f(z) f(z) z 0 z_0 z0的去心邻域内的洛朗展开式中只有有限个 ( z − z 0 ) (z-z_0) (zz0)的负幂项,且负幂项的最高幂为 ( z − z 0 ) − m (z-z_0)^{-m} (zz0)m,则 z 0 z_0 z0称为 f ( z ) f(z) f(z)的m阶极点。此时 f ( z ) f(z) f(z) z 0 z_0 z0的去心邻域内可展开为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值