解析函数的孤立奇点-复变函数

孤立奇点的定义

&ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的一个奇点,且 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; δ 0&lt;|z-z_0|&lt;\delta 0<zz0<δ内解析,则称 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的一个孤立奇点(也称单值性孤立奇点),支点称为多值性孤立奇点.
因为 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; δ 0&lt;|z-z_0|&lt;\delta 0<zz0<δ内解析,则在 0 &lt; ∣ z − z 0 ∣ &lt; δ 0&lt;|z-z_0|&lt;\delta 0<zz0<δ内有

f ( z ) = ∑ n = − ∞ + ∞ C n ( z − z 0 ) n = ∑ n = 0 + ∞ C n ( z − z 0 ) n + ∑ n = 1 + ∞ C − n ( z − z 0 ) − n f(z)=\sum_{n=-\infty}^{+\infty} C_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} C_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{+\infty} C_{-n}\left(z-z_{0}\right)^{-n} f(z)=n=+Cn(zz0)n=n=0+Cn(zz0)n+n=1+Cn(zz0)n
其中 ∑ n = − ∞ + ∞ C n ( z − z 0 ) n \sum\limits_{n=-\infty}^{+\infty} C_{n}\left(z-z_{0}\right)^{n} n=+Cn(zz0)n称为孤立奇点 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的正则部分,而 ∑ n = 1 + ∞ C − n ( z − z 0 ) − n \sum\limits_{n=1}^{+\infty} C_{-n}\left(z-z_{0}\right)^{-n} n=1+Cn(zz0)n成为 f ( z ) f(z) f(z)在孤立奇点 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的主要部分.

孤立奇点的分类

1.可去奇点:如果 f ( z ) f(z) f(z) &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的主要部分为零,则称 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的可去奇点(0是 s i n z z \frac{sinz}{z} zsinz的可去奇点).
2.极点:如果 f ( z ) f(z) f(z) &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的主要部分为
C − m ( z − z 0 ) m + C − m + 1 ( z − z 0 ) m − 1 + ⋯ + C − 1 ( z − z 0 ) , C − m ≠ 0 , \frac{C_{-m}}{\left(z-z_0\right)^{m}}+\frac{C_{-m+1}}{\left(z-z_0\right)^{m-1}}+\cdots+\frac{C_{-1}}{\left(z-z_0\right)^{}}, \quad C_{-m}\ne0, (zz0)mCm+(zz0)m1Cm+1++(zz0)C1,Cm̸=0,则称 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z) m m m级极点,一级极点也成为简单极点(0是 s i n z z 2 \frac{sinz}{z^2} z2sinz的简单奇点).
3.本性奇点:如果 f ( z ) f(z) f(z) &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的主要部分有无穷多项,则称 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的本性奇点(0是 e 1 z e^{\frac{1}{z}} ez1的本性奇点).

奇点类型的判别

1.可去奇点的判别
\qquad 定理:设函数 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le+\infty) 0<zz0<R(0<R+)内解析.那么 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)可去奇点的充分必要条件是 lim ⁡ z → z 0 = α 0 \lim\limits_{z\to z_0}=\alpha_0 zz0lim=α0,其中 α 0 \alpha_0 α0是一有限复数.
\qquad 推论: f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le+\infty) 0<zz0<R(0<R+)内解析.那么 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)可去奇点的充分必要条件是存在正数 &ThinSpace; δ ( δ ≤ R ) \,\delta(\delta\le R) δ(δR)使得 f ( z ) f(z) f(z) Δ ( z 0 , δ ) &NegativeThinSpace; ∖ &NegativeThinSpace; { z 0 } \Delta (z_0,\delta)\!\setminus\!\{z_0\} Δ(z0,δ){z0}内有界.
2.极点的判别
\qquad 定理:设 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le +\infty) 0<zz0<R(0<R+)内解析,则下面三个结论是等价的.
\qquad \qquad (1) &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z) &ThinSpace; m &ThinSpace; \,m\, m级极点.
\qquad \qquad (2) f ( z ) = φ ( z ) ( z − z 0 ) m ( z ∈ Δ ( z 0 , R ) &NegativeThinSpace; ∖ &NegativeThinSpace; { z 0 } ) f(z)=\frac{\varphi(z)}{\left(z-z_0\right){^m }}(z\in\Delta(z_0,R)\!\setminus\!\{z_0\}) f(z)=(zz0)mφ(z)(zΔ(z0,R){z0}),其中 φ ( z ) \varphi(z) φ(z) ∣ z − z 0 ∣ &lt; R |z-z_0|&lt;R zz0<R内解析,且 φ ( z 0 ) ≠ 0 \varphi(z_0)\ne0 φ(z0)̸=0.
\qquad \qquad (3) &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 g ( z ) = 1 f ( z ) g(z)=\frac{1}{f(z)} g(z)=f(z)1 m m m级零点.
\qquad 推论: f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le +\infty) 0<zz0<R(0<R+)内解析, &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的极点的充分必要条件是 lim ⁡ z = z 0 f ( z ) = ∞ \lim\limits_{z=z_0}f(z)=\infty z=z0limf(z)=.
3.本性奇点的判别
\qquad 定理: f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le +\infty) 0<zz0<R(0<R+)内解析,则 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的本性奇点的充分必要条件是 lim ⁡ z = z 0 f ( z ) \lim\limits_{z=z_0}f(z) z=z0limf(z)不存在(有限或无限).
\qquad 定理:设 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的本性奇点,且在 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的一个去心邻域 Δ ( z 0 , δ ) \Delta(z_0,\delta) Δ(z0,δ)内不为零,则 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0也是 1 f ( z ) \frac{1}{f(z)} f(z)1的本性奇点.
\qquad 定理(魏尔斯特拉斯定理):设函数 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R 0&lt;|z-z_0|&lt;R 0<zz0<R内解析,那么 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的本性奇点的充分必要条件是:对于任何 A ∈ C ^ A\in\hat{\mathbb{C}} AC^,存在一收敛于 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 { z n } \{z_n\} {zn},使得 lim ⁡ n → ∞ = A \lim\limits_{n\to\infty}=A nlim=A.
\qquad 定理(皮卡定理):设 f ( z ) f(z) f(z) 0 &lt; ∣ z − z 0 ∣ &lt; R ( 0 &lt; R ≤ + ∞ ) 0&lt;|z-z_0|&lt;R(0&lt;R\le +\infty) 0<zz0<R(0<R+)内解析,那么 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0 f ( z ) f(z) f(z)的本性奇点的充分必要条件是:对于任何复数 A ∈ C ^ A\in\hat{\mathbb{C}} AC^,至多除去一个可能的例外值 A 0 A_0 A0外,必有趋于 &ThinSpace; z 0 &ThinSpace; \,z_0\, z0的无穷点列 ,使得 f ( z n ) = A f(z_n)=A f(zn)=A.可能的例外值 A 0 A_0 A0(如果存在),称为 f ( z ) f(z) f(z)Picard例外值. A = 0 A=0 A=0 e 1 z e^{\frac{1}{z}} ez1Picard例外值.

参考文献

<廖良文. [Fundamentals of Complex Analysis]. 北京: 科学出版社, 2014.>

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值