孤立奇点的定义
设
 
z
0
 
\,z_0\,
z0是
f
(
z
)
f(z)
f(z)的一个奇点,且
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
δ
0<|z-z_0|<\delta
0<∣z−z0∣<δ内解析,则称
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的一个孤立奇点(也称单值性孤立奇点),支点称为多值性孤立奇点.
因为
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
δ
0<|z-z_0|<\delta
0<∣z−z0∣<δ内解析,则在
0
<
∣
z
−
z
0
∣
<
δ
0<|z-z_0|<\delta
0<∣z−z0∣<δ内有
f
(
z
)
=
∑
n
=
−
∞
+
∞
C
n
(
z
−
z
0
)
n
=
∑
n
=
0
+
∞
C
n
(
z
−
z
0
)
n
+
∑
n
=
1
+
∞
C
−
n
(
z
−
z
0
)
−
n
f(z)=\sum_{n=-\infty}^{+\infty} C_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{+\infty} C_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{+\infty} C_{-n}\left(z-z_{0}\right)^{-n}
f(z)=n=−∞∑+∞Cn(z−z0)n=n=0∑+∞Cn(z−z0)n+n=1∑+∞C−n(z−z0)−n
其中
∑
n
=
−
∞
+
∞
C
n
(
z
−
z
0
)
n
\sum\limits_{n=-\infty}^{+\infty} C_{n}\left(z-z_{0}\right)^{n}
n=−∞∑+∞Cn(z−z0)n称为孤立奇点
 
z
0
 
\,z_0\,
z0的正则部分,而
∑
n
=
1
+
∞
C
−
n
(
z
−
z
0
)
−
n
\sum\limits_{n=1}^{+\infty} C_{-n}\left(z-z_{0}\right)^{-n}
n=1∑+∞C−n(z−z0)−n成为
f
(
z
)
f(z)
f(z)在孤立奇点
 
z
0
 
\,z_0\,
z0的主要部分.
孤立奇点的分类
1.可去奇点:如果
f
(
z
)
f(z)
f(z)在
 
z
0
 
\,z_0\,
z0的主要部分为零,则称
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的可去奇点(0是
s
i
n
z
z
\frac{sinz}{z}
zsinz的可去奇点).
2.极点:如果
f
(
z
)
f(z)
f(z)在
 
z
0
 
\,z_0\,
z0的主要部分为
C
−
m
(
z
−
z
0
)
m
+
C
−
m
+
1
(
z
−
z
0
)
m
−
1
+
⋯
+
C
−
1
(
z
−
z
0
)
,
C
−
m
≠
0
,
\frac{C_{-m}}{\left(z-z_0\right)^{m}}+\frac{C_{-m+1}}{\left(z-z_0\right)^{m-1}}+\cdots+\frac{C_{-1}}{\left(z-z_0\right)^{}}, \quad C_{-m}\ne0,
(z−z0)mC−m+(z−z0)m−1C−m+1+⋯+(z−z0)C−1,C−m̸=0,则称
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的
m
m
m级极点,一级极点也成为简单极点(0是
s
i
n
z
z
2
\frac{sinz}{z^2}
z2sinz的简单奇点).
3.本性奇点:如果
f
(
z
)
f(z)
f(z)在
 
z
0
 
\,z_0\,
z0的主要部分有无穷多项,则称
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的本性奇点(0是
e
1
z
e^{\frac{1}{z}}
ez1的本性奇点).
奇点类型的判别
1.可去奇点的判别
\qquad
定理:设函数
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le+\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析.那么
 
z
0
 
\,z_0\,
z0是
f
(
z
)
f(z)
f(z)可去奇点的充分必要条件是
lim
z
→
z
0
=
α
0
\lim\limits_{z\to z_0}=\alpha_0
z→z0lim=α0,其中
α
0
\alpha_0
α0是一有限复数.
\qquad
推论:
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le+\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析.那么
 
z
0
 
\,z_0\,
z0是
f
(
z
)
f(z)
f(z)可去奇点的充分必要条件是存在正数
 
δ
(
δ
≤
R
)
\,\delta(\delta\le R)
δ(δ≤R)使得
f
(
z
)
f(z)
f(z)在
Δ
(
z
0
,
δ
)
​
∖
​
{
z
0
}
\Delta (z_0,\delta)\!\setminus\!\{z_0\}
Δ(z0,δ)∖{z0}内有界.
2.极点的判别
\qquad
定理:设
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le +\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析,则下面三个结论是等价的.
\qquad
\qquad
(1)
 
z
0
 
\,z_0\,
z0是
f
(
z
)
f(z)
f(z)的
 
m
 
\,m\,
m级极点.
\qquad
\qquad
(2)
f
(
z
)
=
φ
(
z
)
(
z
−
z
0
)
m
(
z
∈
Δ
(
z
0
,
R
)
​
∖
​
{
z
0
}
)
f(z)=\frac{\varphi(z)}{\left(z-z_0\right){^m }}(z\in\Delta(z_0,R)\!\setminus\!\{z_0\})
f(z)=(z−z0)mφ(z)(z∈Δ(z0,R)∖{z0}),其中
φ
(
z
)
\varphi(z)
φ(z)在
∣
z
−
z
0
∣
<
R
|z-z_0|<R
∣z−z0∣<R内解析,且
φ
(
z
0
)
≠
0
\varphi(z_0)\ne0
φ(z0)̸=0.
\qquad
\qquad
(3)
 
z
0
 
\,z_0\,
z0是
g
(
z
)
=
1
f
(
z
)
g(z)=\frac{1}{f(z)}
g(z)=f(z)1的
m
m
m级零点.
\qquad
推论:
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le +\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析,
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的极点的充分必要条件是
lim
z
=
z
0
f
(
z
)
=
∞
\lim\limits_{z=z_0}f(z)=\infty
z=z0limf(z)=∞.
3.本性奇点的判别
\qquad
定理:
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le +\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析,则
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的本性奇点的充分必要条件是
lim
z
=
z
0
f
(
z
)
\lim\limits_{z=z_0}f(z)
z=z0limf(z)不存在(有限或无限).
\qquad
定理:设
 
z
0
 
\,z_0\,
z0是
f
(
z
)
f(z)
f(z)的本性奇点,且在
 
z
0
 
\,z_0\,
z0的一个去心邻域
Δ
(
z
0
,
δ
)
\Delta(z_0,\delta)
Δ(z0,δ)内不为零,则
 
z
0
 
\,z_0\,
z0也是
1
f
(
z
)
\frac{1}{f(z)}
f(z)1的本性奇点.
\qquad
定理(魏尔斯特拉斯定理):设函数
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
0<|z-z_0|<R
0<∣z−z0∣<R内解析,那么
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的本性奇点的充分必要条件是:对于任何
A
∈
C
^
A\in\hat{\mathbb{C}}
A∈C^,存在一收敛于
 
z
0
 
\,z_0\,
z0的
{
z
n
}
\{z_n\}
{zn},使得
lim
n
→
∞
=
A
\lim\limits_{n\to\infty}=A
n→∞lim=A.
\qquad
定理(皮卡定理):设
f
(
z
)
f(z)
f(z)在
0
<
∣
z
−
z
0
∣
<
R
(
0
<
R
≤
+
∞
)
0<|z-z_0|<R(0<R\le +\infty)
0<∣z−z0∣<R(0<R≤+∞)内解析,那么
 
z
0
 
\,z_0\,
z0为
f
(
z
)
f(z)
f(z)的本性奇点的充分必要条件是:对于任何复数
A
∈
C
^
A\in\hat{\mathbb{C}}
A∈C^,至多除去一个可能的例外值
A
0
A_0
A0外,必有趋于
 
z
0
 
\,z_0\,
z0的无穷点列 ,使得
f
(
z
n
)
=
A
f(z_n)=A
f(zn)=A.可能的例外值
A
0
A_0
A0(如果存在),称为
f
(
z
)
f(z)
f(z)的Picard例外值.
A
=
0
A=0
A=0是
e
1
z
e^{\frac{1}{z}}
ez1的Picard例外值.
参考文献
<廖良文. [Fundamentals of Complex Analysis]. 北京: 科学出版社, 2014.>