已经说过, 如 a a a 为函数 f ( z ) f(z) f(z) 的孤立奇点, 则 f ( z ) f(z) f(z) 在 a a a点的某去心邻域 K \ { a } K \backslash\{a\} K\{ a} 内可以展成洛朗级数
f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n . f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} . f(z)=n=−∞∑∞cn(z−a)n.
我们称:
- 非负幂部分 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} ∑n=0∞cn