复变函数论5-2-解析函数的孤立奇点3-孤立奇点性质3-本质奇点1:函数f(z)的孤立奇点a为本质奇点的充要条件【lim_{z➝a}f(z)不存在,即lim_{z➝a}f(z)≠有限数也≠∞】

本文介绍了复变函数中关于孤立奇点的性质,特别是本质奇点的概念。通过洛朗级数展开,阐述了函数在某点成为本质奇点的充要条件——当z趋向该点时,函数极限不存在。同时,定义了可去奇点和极点,并给出了它们的特征。定理5.5和5.6提供了判断奇点类型的依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已经说过, 如 a a a 为函数 f ( z ) f(z) f(z) 的孤立奇点, 则 f ( z ) f(z) f(z) a a a点的某去心邻域 K \ { a } K \backslash\{a\} K\{ a} 内可以展成洛朗级数

f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n . f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} . f(z)=n=cn(za)n.

我们称:

  • 非负幂部分 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} n=0cn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值