PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接:洛谷 P1982 [NOIP2013 普及组] 小朋友的数字
题目
题目描述
有
n
n
n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。
作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。
请计算所有小朋友分数的最大值,输出时保持最大值的符号,将其绝对值对
p
p
p 取模后输出。
输入格式
第一行包含两个正整数
n
,
p
n,p
n,p,之间用一个空格隔开。
第二行包含
n
n
n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。
输出格式
一个整数,表示最大分数对 p p p 取模的结果。
样例1
输入
5 997
1 2 3 4 5
输出
21
样例2
输入
5 7
-1 -1 -1 -1 -1
输出
-1
提示
样例解释1
小朋友的特征值分别为 1 , 3 , 6 , 10 , 15 1,3,6,10,15 1,3,6,10,15,分数分别为 1 , 2 , 5 , 11 , 21 1,2,5,11,21 1,2,5,11,21,最大值 21 21 21 对 997 997 997 的模是 21 21 21。
样例解释2
小朋友的特征值分别为 − 1 , − 1 , − 1 , − 1 , − 1 -1,-1,-1,-1,-1 −1,−1,−1,−1,−1,分数分别为 − 1 , − 2 , − 2 , − 2 , − 2 -1,-2,-2,-2,-2 −1,−2,−2,−2,−2,最大值 − 1 -1 −1 对 7 7 7 的模为 − 1 -1 −1,输出 − 1 -1 −1。
数据范围
对于 50 % 50\% 50% 的数据, 1 ≤ n ≤ 1000 1 \le n \le 1000 1≤n≤1000, 1 ≤ p ≤ 1000 1 \le p \le 1000 1≤p≤1000,所有数字的绝对值不超过 1000 1000 1000;
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 6 1 \le n \le {10}^6 1≤n≤106, 1 ≤ p ≤ 10 9 1 \le p \le {10}^9 1≤p≤109,其他数字的绝对值均不超过 10 9 {10}^9 109。
题解
这道题最大的易错点在于会爆long long,所以我们可以考虑将其分成除以p的商和余数两个部分分开存。但需要注意要重构运算符。(其实也可以考虑用高精)
还有需要注意的是读题,比如我一开始看错的,每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值
,不一定是从前面的其中一个开始到当前的。
代码实现
//洛谷 P1982 [NOIP2013 普及组] 小朋友的数字
#pragma GCC optimize(3)
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
ll n,p;
struct num{
long long x,y;
bool operator <(const num a)const{
return x<a.x||(x==a.x&&y<a.y);
}
num operator +(const num a)const{
num ans;
ans.x=x+a.x;
ans.y=y+a.y;
ans.x+=ans.y/p;
ans.y%=p;
while(ans.y<0&&ans.x>0){
ans.y+=p;
--ans.x;
}
while(ans.y>0&&ans.x<0){
ans.y-=p;
++ans.x;
}
return ans;
}
num operator -(const num a)const{
num ans;
ans.x=x-a.x;
ans.y=y-a.y;
ans.x+=ans.y/p;
ans.y%=p;
while(ans.y<0&&ans.x>0){
ans.y+=p;
--ans.x;
}
while(ans.y>0&&ans.x<0){
ans.y-=p;
++ans.x;
}
return ans;
}
};
num a[1000010];//数字
num b[1000010];//特征值=前面连续若干个的数字之和的最大值(包括本人)
num c[1000010];//分数=前面小朋友的分数加上特征值的最大值(不包括本人)
num mina;//数字的最小值
num maxb;//分数加上特征值的最大值
num maxc;//分数的最大值
void in(ll &x){
int nt,neg=1;
x=0;
while(!isdigit(nt=getchar())){
if(nt=='-'){
neg=-1;
}
}
x=nt^'0';
while(isdigit(nt=getchar())){
x=(x<<3)+(x<<1)+(nt^'0');
}
x*=neg;
}
int main(){
register int i;
in(n);
in(p);
in(a[1].x);
a[1].y=a[1].x%p;
a[1].x=a[1].x/p;
b[1]=a[1];
if(a[1]<mina){
mina=a[1];
}
for(i=2;i<=n;++i){
in(a[i].x);
a[i].y=a[i].x%p;
a[i].x=a[i].x/p;
a[i]=a[i]+a[i-1];
b[i]=b[i-1]<a[i]-mina?a[i]-mina:b[i-1];
mina=mina<a[i]?mina:a[i];
}
c[1]=b[1];
maxc=c[1];
b[1]=b[1]+c[1];
maxb=b[1];
for(i=2;i<=n;++i){
c[i]=maxb;
maxc=maxc<c[i]?c[i]:maxc;
b[i]=b[i]+c[i];
maxb=maxb<b[i]?b[i]:maxb;
}
printf("%lld",maxc.y%p);
return 0;
}