洛谷 P1982 [NOIP2013 普及组] 小朋友的数字

PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接:洛谷 P1982 [NOIP2013 普及组] 小朋友的数字

题目

题目描述

n n n 个小朋友排成一列。每个小朋友手上都有一个数字,这个数字可正可负。规定每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值。
作为这些小朋友的老师,你需要给每个小朋友一个分数,分数是这样规定的:第一个小朋友的分数是他的特征值,其它小朋友的分数为排在他前面的所有小朋友中(不包括他本人),小朋友分数加上其特征值的最大值。
请计算所有小朋友分数的最大值,输出时保持最大值的符号,将其绝对值对 p p p 取模后输出。

输入格式

第一行包含两个正整数 n , p n,p n,p,之间用一个空格隔开。
第二行包含 n n n 个数,每两个整数之间用一个空格隔开,表示每个小朋友手上的数字。

输出格式

一个整数,表示最大分数对 p p p 取模的结果。

样例1

输入

5 997
1 2 3 4 5

输出

21

样例2

输入

5 7
-1 -1 -1 -1 -1

输出

-1

提示

样例解释1

小朋友的特征值分别为 1 , 3 , 6 , 10 , 15 1,3,6,10,15 1,3,6,10,15,分数分别为 1 , 2 , 5 , 11 , 21 1,2,5,11,21 1,2,5,11,21,最大值 21 21 21 997 997 997 的模是 21 21 21

样例解释2

小朋友的特征值分别为 − 1 , − 1 , − 1 , − 1 , − 1 -1,-1,-1,-1,-1 1,1,1,1,1,分数分别为 − 1 , − 2 , − 2 , − 2 , − 2 -1,-2,-2,-2,-2 1,2,2,2,2,最大值 − 1 -1 1 7 7 7 的模为 − 1 -1 1,输出 − 1 -1 1

数据范围

对于 50 % 50\% 50% 的数据, 1 ≤ n ≤ 1000 1 \le n \le 1000 1n1000 1 ≤ p ≤ 1000 1 \le p \le 1000 1p1000,所有数字的绝对值不超过 1000 1000 1000

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 10 6 1 \le n \le {10}^6 1n106 1 ≤ p ≤ 10 9 1 \le p \le {10}^9 1p109,其他数字的绝对值均不超过 10 9 {10}^9 109

题解

这道题最大的易错点在于会爆long long,所以我们可以考虑将其分成除以p的商和余数两个部分分开存。但需要注意要重构运算符。(其实也可以考虑用高精)
还有需要注意的是读题,比如我一开始看错的,每个小朋友的特征值等于排在他前面(包括他本人)的小朋友中连续若干个(最少有一个)小朋友手上的数字之和的最大值,不一定是从前面的其中一个开始到当前的。

代码实现

//洛谷 P1982 [NOIP2013 普及组] 小朋友的数字
#pragma GCC optimize(3)
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
ll n,p;

struct num{
	long long x,y;
	bool operator <(const num a)const{
		return x<a.x||(x==a.x&&y<a.y);
	}
	num operator +(const num a)const{
		num ans;
		ans.x=x+a.x;
		ans.y=y+a.y;
		ans.x+=ans.y/p;
		ans.y%=p;
		while(ans.y<0&&ans.x>0){
			ans.y+=p;
			--ans.x;
		}
		while(ans.y>0&&ans.x<0){
			ans.y-=p;
			++ans.x;
		}
		return ans;
	}
	num operator -(const num a)const{
		num ans;
		ans.x=x-a.x;
		ans.y=y-a.y;
		ans.x+=ans.y/p;
		ans.y%=p;
		while(ans.y<0&&ans.x>0){
			ans.y+=p;
			--ans.x;
		}
		while(ans.y>0&&ans.x<0){
			ans.y-=p;
			++ans.x;
		}
		return ans;
	}
};

num a[1000010];//数字
num b[1000010];//特征值=前面连续若干个的数字之和的最大值(包括本人)
num c[1000010];//分数=前面小朋友的分数加上特征值的最大值(不包括本人)
num mina;//数字的最小值
num maxb;//分数加上特征值的最大值 
num maxc;//分数的最大值 

 
void in(ll &x){
	int nt,neg=1;
	x=0;
	while(!isdigit(nt=getchar())){
		if(nt=='-'){
			neg=-1;
		}
	}
	x=nt^'0';
	while(isdigit(nt=getchar())){
		x=(x<<3)+(x<<1)+(nt^'0');
	}
	x*=neg;
}

int main(){
	register int i;
	in(n);
	in(p);
	in(a[1].x);
	a[1].y=a[1].x%p;
	a[1].x=a[1].x/p;
	b[1]=a[1];
	if(a[1]<mina){
		mina=a[1];
	}
	for(i=2;i<=n;++i){
		in(a[i].x);
		a[i].y=a[i].x%p;
		a[i].x=a[i].x/p;
		a[i]=a[i]+a[i-1];
		b[i]=b[i-1]<a[i]-mina?a[i]-mina:b[i-1];
		mina=mina<a[i]?mina:a[i];
	}
	c[1]=b[1];
	maxc=c[1];
	b[1]=b[1]+c[1];
	maxb=b[1];
	for(i=2;i<=n;++i){
		c[i]=maxb;
		maxc=maxc<c[i]?c[i]:maxc;
		b[i]=b[i]+c[i];
		maxb=maxb<b[i]?b[i]:maxb;
	}
	printf("%lld",maxc.y%p);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值