数据压缩之降维(三)——KPDA

本文介绍了数据压缩中的非线性降维方法,重点讲解了Kernel Principal Component Analysis (Kernel PCA, KPDA)。通过对比PCA和LDA,解释了KPDA如何在非线性数据集上计算特征向量的协方差,并使用RBF核函数进行处理。此外,还提供了Python实现KPCA的步骤,并通过half moons和concentric circles数据集展示了PCA与KPCA在非线性数据分类中的效果差异。" 112850739,8119445,Java应用的多租户适配与隔离实践,"['Java开发', '多租户架构', '数据库隔离', '缓存管理', '定时任务调度']
摘要由CSDN通过智能技术生成

学习《python machine learning》chapter5——Compressing data via dimensionality reduction

PCA链接 https://blog.csdn.net/Amy_mm/article/details/79812241

主要内容如下:

(1)主要成分分析 Principal Component Analysis (PCA) ——非监督学习

(2)线性判别分析 Linear Discriminant Analysis (LDA) ——监督学习

(3)核主成分分析 Kernel Principal Component Analysis ——非线性降维

源码 git 地址:https://github.com/xuman-Amy/compressing-data

 

对于非线性数据的降维有以下方法:

方法一:首先将非线性数据映射到一个新的高维特征空间,然后运用标准PCA对数据进行降维,从而将数据集转换为线性可分的数据集。

但是这样不高效,computationally very expensive

方法二就是KPDA~~

KPDA可以计算高维数据集中两个特征向量在原始数据集中的相似性。

【KPDA】

 

定义映射函数

在PCA中计算两个特征值的协方差如下:

因为数据标准化后,均值为0,所以公式简化为

一般的协方差计算公式:

计算非线性数据集的协方差矩阵,将样本特征向量换成经过函数转换的特征向量:

为特征值,v为特征向量,a可以通过从kernel 矩阵K中提取特征向量得到

【kernel matrix】 

其中,为n*k维矩阵

等式可以写成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值