在本科阶段的教材中,往往会有多元正态分布的公式出现,但课堂上都不会重点讲解,而在研究生入学考试中也基本不会考。但在实际应用中,多元的情况却非常常见。
本文通过对多元正态分布的公式进行拆解,来正式认识一下它。
1 多元正态分布公式
对于 D D D维正态分布变量 x x x,直接上它的密度公式:
N ( x ∣ μ , Σ ) = 1 ( 2 π ) D / 2 1 ∣ Σ ∣ 1 / 2 exp { − 1 2 ( x − μ ) ′ Σ − 1 ( x − μ ) } \mathcal{N}(x|\mu,\Sigma)=\dfrac{1}{(2\pi)^{D/2}}\dfrac{1}{\vert\Sigma\vert^{1/2}}\exp\left\{-\dfrac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right\} N(x∣μ,Σ)=(2π)D/21∣Σ∣1/21exp{
−21(x−μ)′Σ−1(x−μ)}
其中 μ \mu μ为 D × 1 D\times 1 D×1的均值向量, Σ \Sigma Σ为 D × D D\times D D×D的协方差矩阵。
公式看起来十分复杂,相信第一次见到时,几乎所有人都会被吓到。沉住气,我们把它拆解了看。
2 公式拆解
先看最后面指数函数中的部分,其中有一个二次型:
Δ 2 = ( x − μ ) ′ Σ − 1 ( x − μ ) \Delta^2=(x-\mu)'\Sigma^{-1}(x-\mu) Δ2=(x−μ)′Σ